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Abstract

NP-complete combinatorial problems often necessitate the use of near-optimal solution techniques includ-
ing heuristics and metaheuristics. The addition of multiple optimization criteria can further complicate 
comparison of these solution techniques due to the decision-maker’s weighting schema potentially mask-
ing search limitations. In addition, many contemporary problems lack quantitative assessment tools, 
including benchmark data sets. This chapter proposes the use of lexicographic goal programming for use 
in comparing combinatorial search techniques. These techniques are implemented here using a recently 
formulated problem from the area of production analysis. The development of a benchmark data set and 
other assessment tools is demonstrated, and these are then used to compare the performance of a genetic 
algorithm and an H-K general-purpose heuristic as applied to the production-related application.

Introduction

More and more manufacturers are acting to 
recycle and remanufacture their post-consumed 

products due to new and more rigid environmen-
tal legislation, increased public awareness, and 
extended manufacturer responsibility. A crucial 
first step is disassembly. Disassembly is defined 
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as the methodical extraction of valuable parts, 
subassemblies, and materials from discarded 
products through a series of operations. Recently, 
disassembly has gained a great deal of attention 
in the literature due to its role in environmen-
tally conscious manufacturing. A disassembly 
line system faces many unique challenges; for 
example, it has significant inventory problems 
because of the disparity between the demands 
for certain parts or subassemblies and their 
yield from disassembly. These many challenges 
are reflected in its formulation as a multicriteria 
decision making problem.

Line balancing (ordering assembly/disassem-
bly tasks on a line to achieve some objective) is 
critical in minimizing the use of valuable resources 
(e.g., time and money) invested and in maximizing 
the level of automation and the quality of parts or 
materials recovered (Figure 1). The Disassembly 
Line Balancing Problem (DLBP) seeks a sequence 
of parts for removal from an end of life product 
that minimizes the resources for disassembly and 
maximizes the automation of the process and 
the quality of the parts or materials recovered. 
This chapter first mathematically models the 
multicriteria DLBP, which belongs to the class 
NP-complete, necessitating use of specialized 
solution techniques. Combinatorial optimization 
is an emerging field that combines techniques from 
applied mathematics, operations research, and 
computer science to solve optimization problems 
over discrete structures. Due to the suboptimal 
nature of these searches, a method is needed to 
access different combinatorial optimization tech-
niques. Lexicographic goal programming is pro-
posed to provide a hierarchical search structure, 
while quantitative tools including a benchmark 
data set are introduced. The DLBP is then solved 
using two combinatorial optimization methods: 
a genetic algorithm (GA) and the hunter-killer 
(H-K) general-purpose heuristic.

Literature Review

Key to addressing any engineering problem is to 
understand how complex or easy it is, what it shares 
with similar problems, and appropriate methods 
to obtain reasonable solutions. For these reasons, 
a background in optimization and algorithms is 
valuable. Tovey (2002) provides a well-structured 
review of complexity, NP-hardness, NP-hardness 
proofs (including the concise style of Garey & 
Johnson, 1979), typical NP-hard problems, the 
techniques of specialization, forcing, padding, 
and gadgets, mathematical programming versus 
heuristics, and other complexity classifications. 
Rosen (1999) provides a useful text in the general 
area of discrete mathematics including set theory, 
logic, algorithms, graph theory, counting, set 
theory and proofs. Papadimitriou and Steiglitz 
(1998) is the de-facto text on combinatorial optimi-
zation as is Garey and Johnson (1979) in the area 
of NP-completeness. Holland (1975) is credited 
with developing the genetic algorithm. Osman and 
Laporte (1996) provide a well-researched paper 
on all forms of metaheuristics, the basic concepts 
of each, and references to applications. A follow-
on paper by Osman (2004) is more compact and 
also more current.

A major part of manufacturing and assembly 
operations, the assembly line is a production line 
where material moves continuously at a uniform 
rate through a sequence of workstations where 
assembly work is performed. With research pa-
pers going back to the 1950’s, the Assembly Line 
Balancing problem is well defined and fairly well 
understood. While having significant differences 
from assembly line balancing, the recent devel-
opment of DLBP requires that related problems 
be fully investigated and understood in order to 
better define DLBP and to obtain guidance in the 
search for appropriate methodologies to solve it. 
Gutjahr and Nemhauser (1964) first described a 
solution to the Assembly Line Balancing prob-
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lem, while Erel and Gokcen (1964) developed a 
modified version by allowing for mixed-model 
lines (assembly lines used to assemble different 
models of the same product). Suresh, Vinod, and 
Sahu (1996) first presented a genetic algorithm to 
provide a near-optimal solution to the Assembly 
Line Balancing problem. Tabu search is used in 
balancing assembly lines in Lapierre, Ruiz, and 
Soriano (2006) using SALB-I with instances from 
the literature (Arcus 1 and 2) and a case study from 
industry. Hackman, Magazine, and Wee (1989) 
proposed a branch-and-bound heuristic for the 
SALB-I problem. Ponnambalam, Aravindan, and 
Naidu (1999) compared line-balancing heuristics 
with a quantitative evaluation of six assembly line 
balancing techniques.

Many papers have discussed the different 
aspects of product recovery. Brennan, Gupta, 
and Taleb (1994) and Gupta and Taleb (1994) 
investigated the problems associated with disas-
sembly planning and scheduling. Torres, Gil, 
Puente, Pomares, and Aracil (2004) reported a 
study for nondestructive automatic disassembly 
of personal computers. Gungor and Gupta (1999b, 
1999c, 2002, 2001) presented the first introduction 
to disassembly line balancing and developed an 
algorithm for solving the DLBP in the presence 
of failures with the goal of assigning tasks to 

workstations in a way that probabilistically mini-
mizes the cost of defective parts. For a review of 
environmentally conscious manufacturing and 
product recovery see Gungor and Gupta (1999a). 
For a comprehensive review of disassembly se-
quencing see Lambert (2003) and Lambert and 
Gupta (2005). McGovern, Gupta, and Kamarthi 
(2003) first proposed combinatorial optimization 
techniques for the DLBP.

Modeling the Multi-criteria 
Production Problem

The desired solution to a DLBP instance consists 
of an ordered sequence (i.e., n-tuple) of work ele-
ments (also referred to as tasks, components, or 
parts). For example, if a solution consisted of the 
eight-tuple 〈5, 2, 8, 1, 4, 7, 6, 3〉, then component 
5 would be removed first, followed by component 
2, then component 8, and so on.

While different authors use a variety of defi-
nitions for the term “balanced” in reference to 
assembly (Elsayed & Boucher, 1994) and disas-
sembly lines, we propose the following definition 
(McGovern et al., 2003; McGovern & Gupta, 2003) 
that considers the total number of workstations 
NWS and the station times (i.e., the total process-
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Figure 1. Multicriteria selection procedure
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ing time requirement in workstation j) STj; this 
definition will be used consistently throughout 
this chapter:

Definition: A disassembly line is optimally bal-
anced when the fewest possible number of work-
stations is needed and the variation in idle times 
between all workstations is minimized. This is 
mathematically described by

Minimize NWS	

then

Minimize [max (STx) − min (STy)] ∀ x, y∈{1, 2,…, 
NWS}

This is done while meeting any constraints, 
including precedence constraints. Line balanc-
ing can be visualized in Figure 1 with the boxes 
representing workstations (five here), the total 
height of the boxes indicating cycle time CT (the 
maximum time available at each workstation), 
the numbered boxes representing each part (1 
through 11 here) and proportionate in height to 
each part removal time, and the gray area indica-
tive of the idle time.

Minimizing the sum of the workstation idle 
times I, which will also minimize the total number 
of workstations, is described by

∑
=

−=
NWS

j
jSTCTI

1

)( 			   (1)

Line balancing seeks to achieve perfect balance 
(i.e., all idle times equal to zero). When this is 
not achievable, either Line Efficiency (LE) or the 
Smoothness Index (SI) is often used as a perfor-
mance evaluation tool (Elsayed & Boucher, 1994). 
SI rewards similar idle times at each workstation, 
but at the expense of allowing for a large (subop-

timal) number of workstations. This is because SI 
compares workstation elapsed times to the largest 
STj instead of to CT. (SI is very similar in format 
to the sample standard deviation from the field of 
statistics, but using max(STj) | j∈{1, 2,…, NWS} 
rather than the mean of the station times.) LE re-
wards the minimum number of workstations but 
allows unlimited variance in idle times between 
workstations because no comparison is made 
between STjs. The balancing method developed 
by McGovern et al. (2003; McGovern & Gupta, 
2003) seeks to simultaneously minimize the 
number of workstations while ensuring that idle 
times at each workstation are similar, though at the 
expense of the generation of a nonlinear objective 
function. A resulting minimum numerical value 
is the more desirable solution, indicating both a 
minimum number of workstations and similar 
idle times across all workstations. The measure 
of balance F is represented as

∑
=

−=
NWS

j
jSTCTF

1

2)( 			   (2)

Note that mathematically, Formula (2) effec-
tively makes Formula (1) redundant due to the 
fact that it concurrently minimizes the number 
of workstations. This new method should be ef-
fective with traditional assembly line balancing 
problems as well.

Theorem: Let PRTk be the part removal time for 
the kth of n parts where CT is the maximum amount 
of time available to complete all tasks assigned to 
each workstation. Then for the most efficient dis-
tribution of tasks, the minimum (optimal) number 
of workstations, NWS* satisfies

NWS* ≥ 
















∑
=

CT

PRT
n

k
k

1
			   (3)
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Proof:	 If the inequality is not satisfied, then 
there must be at least one workstation completing 
tasks requiring more than CT of time, which is a 
contradiction.		  �

Subsequent bounds are shown to be true in a 
similar fashion and are presented throughout the 
chapter without proof.

The upper bound (worst case) for the number 
of workstations is given by

NWSnom = n				    (4)

Therefore

















∑
=

CT

PRT
n

k
k

1 ≤ NWS ≤ n		  (5)

The lower bound on F is given by

*
2

*
* NWS

NWS
IF ⋅






≥

		
(6)

while the upper bound is described by

∑
=

−=
n

k
knom PRTCTF

1

2)(
		

(7)

therefore

∑
=

−≤≤⋅





 n

k
kPRTCTFNWS

NWS
I

1

2*
2

* )(
	

						    
(8)

A hazard measure was developed to quantify 
each solution sequence’s performance, with a 
lower calculated value being more desirable. This 
measure is based on binary variables that indicate 
whether a part is considered to contain hazardous 

material (the binary variable is equal to one if the 
part is hazardous, else zero) and its position in 
the sequence. A given solution sequence hazard 
measure is defined as the sum of hazard binary 
flags multiplied by their position in the solution 
sequence, thereby rewarding the removal of haz-
ardous parts early in the part removal sequence. 
This measure H is represented as

)(
1
∑
=

⋅=
n

k
PS k

hkH   




=
otherwise
hazardous

h
kPS ,0

,1   

 )(
1
∑
=

⋅=
n

k
PS k

hkH   




=
otherwise
hazardous

h
kPS ,0

,1   

 

		  (9)

where PSk identifies the kth part in the solution 
sequence; that is, for solution 〈3, 1, 2〉, PS2 
= 1. The lower bound on the hazardous part 
measure is given by

∑
=

=
||

1

*
HP

p
pH

				  
(10)

where the set of hazardous parts is defined as

HP = {k : hk ≠ 0 ∀ k ∈ P}		  (11)

where P set of n part removal tasks, and its car-
dinality can be calculated with

∑
=

=
n

k
khHP

1

|| 				    (12)

For example, a product with three hazardous 
parts would give an H* value of 1 + 2 + 3 = 6. 
The upper bound on the hazardous part measure 
is given by

∑
+−=

=
n

HPnp
nom pH

1|| 			 
(13)
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or alternatively

|||)|( HPHPnHnom −⋅= 		  (14)

For example, three hazardous parts in a product 
having a total of twenty would give an Hnom value 
of 18 + 19 + 20 = 57 or equivalently, Hnom = (20 ⋅ 
3) – 3 = 60 – 3 = 57. Formulae (10), (13), and (14) 
are combined to give

∑
=

||

1

HP

p
p ≤ H ≤ ∑

+−=

n

HPnp
p

1||

 = |||)|( HPHPn −⋅  

						      (15)

Also, a demand measure was developed to 
quantify each solution sequence’s performance, 
with a lower calculated value being more desirable. 
This measure is based on positive integer values 
that indicate the quantity required of this part after 
it is removed—or zero if it is not desired—and 
its position in the sequence. Any given solution 
sequence demand measure is defined as the sum 
of the demand value multiplied by their position 
in the sequence, rewarding the removal of high 
demand parts early in the part removal sequence. 
This measure D is represented as

)(
1
∑
=

⋅=
n

k
PS k

dkD   kPS PSd
k

∀Ν∈ ,  

)(
1
∑
=

⋅=
n

k
PS k

dkD   kPS PSd
k

∀Ν∈ ,  			   (16)

The lower bound on the demand measure (D*) 
is given by Formula (16) where

nPSPSPS ddd ≥≥≥ ...
21 		  (17)

For example, three parts with demands of 
4, 5, and 6 respectively would give a best-case 
value of (1 ⋅ 6) + (2 ⋅ 5) + (3 ⋅ 4) = 28. The upper 
bound on the demand measure (Dnom) is given by 
Formula (16) where

nPSPSPS ddd ≤≤≤ ...
21

		  (18)

For example, three parts with demands of 4, 5 
and 6 respectively would give a worst-case value 
of (1 ⋅ 4) + (2 ⋅ 5) + (3 ⋅ 6) = 32.

Finally, a direction measure was developed to 
quantify each solution sequence’s performance, 
with a lower calculated value indicating minimal 
direction changes and a more desirable solution. 
This measure is based on a count of the direction 
changes. Integer values represent each possible 
direction (typically r = {+ x, − x, + y, − y, + z, 
− z}; in this case |r| = 6). These directions are 
expressed as















−−
++
−−
++
−−
++

=

zdirection
zdirection
ydirection
ydirection
xdirection
xdirection

r
kPS

,3
,3
,2
,2
,1
,1

	 (19)

and are easily expanded to other or different direc-
tions in a similar manner. The direction measure 
R is represented as

∑
−

=

=
1

1

n

k
kRR   



 ≠

= +

otherwise

rr
R kk PSPS

k ,0

,1
1  

∑
−

=

=
1

1

n

k
kRR   



 ≠

= +

otherwise

rr
R kk PSPS

k ,0

,1
1  

		
(20)

The lower bound on the direction measure 
is given by

1||* −= rR 				    (21)

For example, for a given product containing 
six parts that are installed/removed in directions 
rk = (– y, + x, – y, – y, + x, + x) the resulting best-
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case value would be 2 – 1 = 1 (e.g., one possible 
R* solution containing the optimal, single-change 
of product direction would be: 〈– y, – y, – y, + x, 
+ x, + x〉). In the specific case where the number 
of unique direction changes is one less than the 
total number of parts n, the upper bound on the 
direction measure would be given by

|| rRnom =  where 1|| −= nr  	 (22)

Otherwise, the measure varies depending on 
the number of parts having a given removal direc-
tion and the total number of removal directions. 
It is bounded by

1|| −≤≤ nRr nom  where 1|| −< nr  

						      (23)

For example, six parts installed/removed in 
directions rk = (+ x, + x, + x, – y, + x, + x) would 
give an Rnom value of 2 as given by the lower bound 
of Formula (23) with a solution sequence of 〈+ x, 
+ x, – y, + x, + x, + x〉. Six parts installed/removed 
in directions rk = (– y, + x, – y, – y, + x, + x) would 
give an Rnom value of 6 – 1 = 5 as given by the upper 
bound of Formula (23) with a solution sequence 
of 〈– y, + x, – y, + x, – y, + x〉 for example.

In the special case where each part has a unique 
removal direction, the measures for R* and Rnom 
are equal and are given by

1* −== nRR nom   where nr =||  

1* −== nRR nom   where nr =||  			   (24)

Note that the optimal and nominal hazard, 
demand, and direction formulae are dependent 
upon favorable precedence constraints that will 
allow for generation of these optimal or nomi-
nal measures. Finally, note that McGovern and 
Gupta (2006a) have proven that the DLBP is 
NP-complete.

The combinatorial optimization techniques 
described here make use of these many criteria 

in a lexicographic form (detailed in the next 
section) to address the multicriteria aspects of 
DLBP. Since measure of balance is the primary 
consideration in this chapter, additional objec-
tives are only considered subsequently; that is, 
the methodologies first seek to select the best 
performing measure of balance solution; equal 
balance solutions are then evaluated for hazardous 
part removal positions; equal balance and hazard 
measure solutions are evaluated for high-demand 
part removal positions; and equal balance, hazard 
measure and high-demand part removal position 
solutions are evaluated for the number of direc-
tion changes. This priority ranking approach was 
selected over a weighting scheme for its simplicity, 
ease in reranking the priorities, ease in expanding 
or reducing the number of priorities, due to the 
fact that other weighting methods can be readily 
addressed at a later time, and primarily to enable 
unencumbered efficacy (a method’s effectiveness 
in finding good solutions) analysis of the combi-
natorial optimization methodologies and problem 
data instances under consideration.

Lexicographic Goal 
Programming for Use in 
Solution Methodology 
Evaluation

One of the ways in which the complexity of 
DLBP manifests itself is with the multiple, often 
conflicting objectives (as defined in the previous 
section). The field of multiple-criteria decision 
making (MCDM) provides a variety of means 
for addressing the selection of a solution where 
several objectives exist. The bulk of MCDM 
methods involve multicriteria versions of linear 
programming (LP) problems. Since DLBP re-
quires integers exclusively as its solution, it cannot 
be formulated as an LP. Additionally, since the 
objective described by Formula (2) is nonlinear, 
DLBP is not linear either (a requirement of LP, 
though this can be remedied using a version of the 
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descriptions in the previous formal Definition). 
Also, many MCDM methods rely on weighting. 
These weights are in proportion to the importance 
of each objective. Weights were not desirable for 
this study since any results would be expected to 
be influenced by the weights selected. While this 
is appropriate for an application of the methodolo-
gies in this study to an applied problem and using 
experts to select the appropriate weights, here 
weighting would only serve to add an additional 
level of complexity to the comprehension of the 
problem and the proposed solutions. In addition, 
since the research in this study is not applied to 
a particular, unique disassembly situation but 
rather to the DLBP in general, the assignment of 
weighting values would be completely arbitrary 
and hence add little if any value to the final analysis 
of any results. Finally, the use of weights may not 
adequately reflect the generalized performance 
of the combinatorial optimization methods being 

studied; nuances in the methods, the data, and 
the weights themselves may generate atypical, 
unforeseen, or non-repeatable results. For these 
reasons, a simplified process was developed to 
select the best solution. Based on the priorities 
listed, the balance is the primary objective used 
to search for an optimal solution (note the use 
of “less than” and “less than or equal to” signs 
in Figure 2 indicating the desire for the better 
solution to be on the left side of the inequality 
since we are seeking to minimize all measures). 
Given multiple optimum extreme points in F, 
early removal of hazardous parts is then consid-
ered. Given multiple optimum extreme points in 
F and H, early removal of high-demand parts is 
considered next. Finally, given multiple optimum 
extreme points in F, H, and D, adjacent removal 
of parts with equivalent part removal directions is 
considered. This process is shown in pseudo-code 
format in Figure 2 where the most recent solution 

Procedure BETTER_SOLUTION (new_solution, best_solution) { 
IF (new_solution.F < best_solution.F 

∨ 
 (new_solution.F ≤ best_solution.F ∧ 
 new_solution.H < best_solution.H) 
 ∨ 
 (new_solution.F ≤ best_solution.F ∧ 
 new_solution.H ≤ best_solution.H ∧ 
 new_solution.D < best_solution.D) 
 ∨ 
 (new_solution.F ≤ best_solution.F ∧ 
 new_solution.H ≤ best_solution.H ∧ 
 new_solution.D ≤ best_solution.D∧ 
 new_solution.R < best_solution.R)){ 
  RETURN (TRUE) 
 } 
 RETURN (FALSE) 
} 

Figure 2. Multicriteria selection procedure
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generated is given by new_solution while the best 
solution visited thus far in the search is given by 
best_solution with .F, .H, .D, and .R indicating 
the respective solution’s numerical measures from 
formulae (2), (9), (16), and (20).

This process has its basis in two MCDM 
techniques:

The feasible region in an LP problem (and in 
DLBP) is usually a multidimensional subset of 
Rz containing an infinite (finite in DLBP due to 
its integer nature) number of points. Because it 
is formed by the intersection of a finite number 
of closed half-spaces (defined by ≤ and ≥, that 
is, the inequality constraints) and hyperplanes 
(equality constraints) it is polyhedral. Thus, the 
feasible region is closed and convex with a finite 
number of extreme points. The Simplex method 
(Hillier & Lieberman, 2005) for solving LPs 
exploits the polyhedral properties in the sense 
that the optimal solutions can be found without 
having to examine all of the points in the feasible 
region. Taking the steepest gradient following 
each point examined accomplishes this. Con-
ventional LP algorithms and software terminate 
their search once the first optimal extreme point is 
found (in our example, once the first F* is found). 
They fail to identify alternative optima if they 
exist. In general, an LP instance may have one 
or more optimal extreme points and one or more 
unbounded edge(s) (though the latter would not 
be expected of DLBP since it should be contained 
within the convex hull of a polytope, that is, a 
finite region of n-dimensional space enclosed by 
a finite number of hyperplanes). The optimal set 
is the convex combination (i.e., the set of all the 
points) of all optimal extreme points and points 
on unbounded edges. It is therefore desired to test 
all optimal extreme points. This can be done by 
pivoting and is performed using what is known 
as a Phase III bookkeeping system. Determining 
all alternative optima is enabled in a similar way 
using the routine shown in Figure 2 (as long as the 
combinatorial optimization technique in question 
is able to visit those extreme points).

A second MCDM technique that the process 
in Figure 2 borrows from is preemptive (lexico-
graphic) goal programming (GP). GP was initially 
conceived by Charnes, Cooper, and Ferguson 
(1955) and Charnes and Cooper (1961) and 
conceptualizes objectives as goals then assigns 
priorities to the achievement of these goals. In 
preemptive GP, goals are grouped according to 
priorities. The goals at the highest priority level 
are considered to be infinitely more important than 
goals at the second priority level, and the goals 
at the second priority level are considered to be 
infinitely more important than goals at the third 
priority level, and so forth (note that a search can 
effectively terminate using GP if a high priority 
goal has a unique solution; as a result, lower order 
goals would not have the opportunity to influence 
the GP-generated solution). This process can be 
readily seen in Figure 2 where “infinitely more 
important” is enforced using the “less than or 
equal to” (≤) symbol.

This chapter makes use of the term “optimal” 
to describe the best solution. It should be noted 
that in the field of MCDM this term is changed to 
“efficient” (also, noninferior, nondominated, or 
Pareto-optimum) where there is no unique solu-
tion that maximizes all objectives simultaneously. 
With this understanding, “optimal” will continue 
to be used to refer to the best answer possible for 
a given instance and meeting the criteria set in 
Figure 2.

Assessment Tools

While the disassembly line is the best choice for 
automated disassembly of returned products, find-
ing the optimal balance for a disassembly line is 
computationally intensive with exhaustive search 
quickly becoming prohibitively large. Combina-
torial optimization techniques provide a general 
algorithmic framework that can be applied to this 
optimization problem. Although combinatorial 
optimization holds promise in solving DLBP, one 
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of the concerns when using heuristics is the idea 
that very little has been rigorously established in 
reference to their performance; developing ways 
of explaining and predicting their performance is 
considered to be one of the most important chal-
lenges currently facing the fields of optimization 
and algorithms (Papadimitriou & Steiglitz, 1998). 
These challenges exist in the variety of evaluation 
criteria available, a lack of data sets for testing 
(disassembly-specific instances are addressed in 
Section 5.5), and a lack of performance analysis 
tools. In this section, mathematical and graphical 
tools for quantitative and qualitative performance 
analysis are developed and reviewed, focusing 
on analytical methodologies used in evaluating 
both of the combinatorial optimization searches 
used here. 

Graphical Analysis Tools

Charts and tables provide an intuitive view into 
the workings and performance of solution-gener-
ating techniques. Both are used here to enhance 
the qualitative understanding of a methodology’s 
execution and status of its terminal state as well as 
to allow for a comparison of relative performance 
with instance size and when compared to other 
methodologies.

The tables are used to observe the solution of 
any single instance. The tables used here present 
a solution in the following format: the sequence 
n-tuple is listed in the first row, followed by 
the corresponding part removal times, then the 
workstation assignments, then the hazard values, 
followed by the demand values, and finally the 
direction values (note that the direction representa-
tion {+x, −x, +y, −y, +z, −z} is changed from {+1, 
−1, +2, −2, +3, −3} as portrayed in the McGovern 
and Gupta (2006b) formulae to {0, 1, 2, 3, 4, 5} 
for purposes of software engineering). To improve 
readability, the columns are shaded corresponding 
to the workstation assignment using alternating 
shades of gray. Use of this format (i.e., table) al-
lows for study of the final solution state as well as 

potentially enabling improvements in algorithm 
performance due to insights gained by this type 
of observation.

The second graphical format used to allow for 
qualitative study of techniques and their solutions 
consists of a graphical comparison of known 
best- and worst-case results with the results/aver-
aged results (deterministic techniques/stochastic 
techniques; since methodologies with a probabi-
listic component—such as would be found with 
evolutionary algorithms—can be expected to 
generate different answers over multiple runs) 
of a solution technique under consideration. The 
charts are used to observe multiple, varying-size 
solutions of the DLBP A Priori instances. Multiple 
charts are used to display the various performance 
measures, which are demonstrated here with the 
DLBP A Priori benchmark data sets of sizes 8 ≤ 
n ≤ 80. The near-optimal solutions coupled with 
the known optimal and nominal solutions for all 
instance sizes under study provides a method, 
not only for comparing the methodologies to the 
best and worst cases, but to other methodologies 
as well. Computational complexity is portrayed 
using time complexity (analysis of the time re-
quired to solve a particular size instance of a given 
problem) while space complexity (analysis of the 
computer memory required to solve a particular 
size instance of a given problem; Rosen, 1999) is 
not considered. All time complexities are provided 
in asymptotic notation (big-Oh, big-Omega, and 
big-Theta) when commonly known or when cal-
culated where able. “Time complexity” typically 
refers to worst-case runtimes, while in the numeri-
cal results portion of this chapter, the runtimes 
provide a qualitative description of the studied 
methodologies, so the experimentally determined 
time complexities are presented with the under-
standing that the information is the average-case 
time complexity of the particular software written 
for the problem used with a specific instance. In 
this chapter the charts used include: number of 
workstations with optimal, balance measure with 
optimal, normalized balance measure with opti-
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mal and nominal, hazard measure with optimal 
and nominal, demand measure with optimal and 
nominal, direction measure with optimal and 
nominal, average-case time complexity with 
third-order and exhaustive growth curves, and 
average-case time complexity curves in detail. 
Note that “number of workstations” and “idle 
time” measures are analogous (e.g., one can be 
calculated from the other) so only “number of 
workstations” is calculated and displayed here. 
Also, while “number of workstations” and “bal-
ance” are both calculated in various ways and 
displayed in separate graphs, they are strongly 
related as well. Both are presented to allow insight 
into the search processes and further quantify 
the efficacy of their solutions; however, it should 
be noted that, for example, a solution optimal in 
balance must also obviously be optimal in the 
number of workstations.

Note that with the graphs depicting third-order 
(i.e., O(n3)) and exhaustive (i.e., O(n!)) growth 
curve graphics (as seen in Figure 14), the actual 
average-case time complexity curve under consid-
eration is often not even readily visible. Even so, 
average-case time complexity with the third-order 
and exhaustive growth curves helps to show how 
relatively fast all of these techniques are, while 
the average-case time complexity graphics (Figure 
15) defines the methodologies’ speed and rate of 
growth in even more detail.

Though not demonstrated in this chapter, it is 
often of value to make use of overlaid linear or 
polynomial fitted regression lines to better pro-
vide graphical information for analysis of some 
of these very fast heuristics. When a heuristic’s 
software is configured to time down to 1/100th of 
a second or slower, it should be recognized that 
many applications of heuristics are able to run on 
that order (or in some cases even faster); therefore, 
average-case time complexity curves may give 
the appearance of making dramatic steps up or 
down when this is actually more of an aberration 
of the order of the timing data that is collected. 
For that reason, showing the average-case time 

complexity with its regression line displays both 
the actual data and more importantly, the shape 
of the time growth in n.

In order to make the balance results comparable 
in magnitude to all other measures and to allow for 
more legible graphical comparisons with worst-
case calculations in the charts, the effects of squar-
ing portions of Formula (2) can be compensated for 
by taking the square root of the resulting F, F*, or 
Fnom. This will subsequently be referred to in this 
study as normalizing (to reflect the concept of a 
reduction in the values to a common magnitude). 
While using Formula (2) is desirable to emphasize 
the importance of a solution’s balance as well as 
to drive stochastic search processes towards the 
optimal solution, normalization allows for a more 
intuitive observation of the relative merits of any 
two solutions. For example, two solutions having 
an equal number of workstations (e.g., NWS = 3) 
but differing balance such as Ij = 〈1, 1, 4〉 and Ij 
= 〈2, 2, 2〉 (optimal balance) would have balance 
values of 18 and 12 respectively, while the nor-
malized values would stand at 4.24 and 3.46, still 
indicating better balance with the latter solution, 
but also giving a sense of the relative improve-
ment that solution provides, which the measure 
generated by Formula (2) lacks.

Efficacy Index Equations

The primary mathematical tool developed for 
quantitative analysis is shown in Formula (25). 
This will subsequently be referred to as the ef-
ficacy index (McGovern & Gupta, 2006b). The 
efficacy index EIx (where x is some metric under 
consideration, e.g., F) is the ratio of the difference 
between a calculated measure and its worst-case 
measure to the measure’s sample range (i.e., the 
difference between the best-case measure and 
the worst-case measure as given by: max(Xy) − 
min(Xz) | y, z ∈{1, 2,…, |X |} from the area of sta-
tistical quality control) expressed as a percentage 
and described by
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This generates a value between 0% and 
100%, indicating the percentage of optimum for 
any given measure and any given combinatorial 
optimization methodology being evaluated. For 
example, the efficacy index formula for balance 
would read
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where the subscript nom represents the worst-
case bound (nominal) for a given data set and 
the superscript * represents the best-case bound 
(optimal) for a given data set.

For the study of multiple data sets, probability 
theory presents us with the concept of a sample 
mean. The sample mean of a method’s efficacy 
index can be calculated using
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where y is the sample size (the number of data 
sets). While Formula (25) provides individual 
data set size efficacy indices—especially useful 
in demonstrating worst and best case as well as 
trends with instance size—Formula (26) allows 
a single numerical value that provides a quanti-
tative measure of the location of the data center 
in a sample.

Statistical Regression

Performed but not demonstrated in here, an ad-
ditional quantitative tool may be borrowed from 
the field of statistics. Simple linear regression 
and correlation (using the sample coefficient of 

determination), and polynomial regression and 
its associated coefficient of multiple determina-
tion can be used to quantify the accuracy of the 
curves and to provide the regression equation. The 
chart containing the combinatorial optimization 
methodologies with the third-order and exhaus-
tive growth curves was used not only to provide a 
qualitative, graphical comparison, but also (along 
with the detailed time complexity curves) to deter-
mine the degree (order) of the fitted polynomial 
regression curve. Once the order was observed 
by comparison, either a linear or a polynomial 
regression model was selected and the regression 
equation was then automatically calculated by 
mathematical software (using, for example, an 
Excel 2000 spreadsheet software function), as 
was the coefficient of determination. The heuristic 
methodologies used here were either first (linear) 
or second order. As part of the quantitative portion 
of this research, this corresponds to average-case 
time complexities of Ο(n) or Ο(n2).

Statistical Coefficient of 
Determination

The coefficient of determination was the final 
portion of the quantitative component of the 
study. This value represents the portion of the 
variation in the collected data explained by the 
fitted curve. The coefficient of determination is 
then multiplied by 100 to illustrate the adequacy 
of the fitted regression model, indicating the per-
centage of variation time that can be attributed 
to the size of the data set. The closer the value 
comes to 100%, the more likely it is an accurate 
model. While the coefficients of the polynomial 
regression model are of interest in presenting as 
accurate a growth curve model as possible, of 
greater value in this study is the order of the model 
since the largest exponent is the only variable of 
interest in complexity theory.
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Performance Assessment 
Experimental Benchmark Data Set 

Any solution methodology needs to be applied to 
a collection of test cases to demonstrate its perfor-
mance as well as its limitations. Benchmark data 
sets are common for many NP-complete problems, 
such as Oliver30 and RY48P for application to the 
Traveling Salesman Problem and Nugent15/20/30, 
Elshafei19, and Krarup30 for the Quadratic As-
signment Problem. Unfortunately, because of 
their size and their design, most of these existing 
data sets have no known optimal answer and new 
solutions are not compared to the optimal solution, 
but rather the best solution to date. In addition, 
since DLBP is a recently defined problem, no 
appropriate benchmark data sets exist.

This size-independent a priori benchmark 
data set was generated (McGovern & Gupta, 
2004) based on the following. Since, in general, 
solutions to larger and larger instances cannot be 
verified as optimal (due to the time complexity of 
exhaustive search), it is proposed that instances 
be generated in such a way as to always provide 
a known solution. This was done by using part 
removal times consisting exclusively of prime 
numbers further selected to ensure that no permu-
tations of these part removal times allowed for any 
equal summations (in order to reduce the number 
of possible optimal solutions). For example, part 
removal times (PRTk, where k typically identifies 
a part or sequence position) 1, 3, 5, and 7, and CT 
= 16 would have minimum idle time solutions of 
not only one 1, one 3, one 5, and one 7 at each 
workstation, but various additional combinations 
of these as well since 1 + 7 = 3 + 5 = ½ CT. Sub-
sequently, the chosen instances were made up of 
parts with removal times of 3, 5, 7, and 11, and 
CT = 26. As a result, the optimal balance for all 
subsequent instances would consist of a perfect 
balance of precedence-preserving permutations 
of 3, 5, 7, and 11 at each workstation with idle 
times of zero. (Note that the cardinality of the 
set of part removal times |PRT| ≤ n since PRTk 

is onto mapped to PRT, though not necessarily 
one-to-one, since multiple parts may have equal 
part removal times; that is, PRTk is a surjection 
and may or may not be a bijection to PRT.)

As demonstrated in Table 1, to further compli-
cate the data (i.e., provide a large, feasible search 
space), only one part was listed as hazardous and 
this was one of the parts with the largest part 
removal time (the last one listed in the original 
data). In addition, one part (the last listed, sec-
ond largest part removal time component) was 
listed as being demanded. This was done so that 
only the hazardous and the demand sequencing 
would be demonstrated while providing a slight 
solution sequence disadvantage to any purely 
greedy methodology (since two parts with part 
removal times of 3 and 5 are needed along with 
the parts with the larger part removal times to 
reach the optimal balance F*, assigning hazard 
and high-demand attributes to those parts with 
smaller part removal times may prevent some 
methodologies from artificially obtaining an F* 
sequence). From each part removal time size, the 
first listed part was selected to have a removal 
direction differing from the other parts with the 
same part removal time. This was done to dem-
onstrate direction selection while requiring any 
solution-generating methodology to move these 
first parts of each part removal time size encoun-
tered to the end of the sequence (i.e., into the last 
workstation) in order to obtain the optimal part 
direction value of R* = 1 (assuming the solution 
technique being evaluated is able to successfully 
place the hazardous and demanded parts towards 
the front of the sequence).

Also, there were no precedence constraints 
placed on the sequence, a deletion that further 
challenges any method’s ability to attain an 
optimal solution (by maximizing the feasible 
search space). This has the added benefit of more 
precisely modeling the restricted version of the 
decision version (i.e., non-optimization) of DLBP 
seen in McGovern and Gupta (2006a).
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Since |PRT| = 4 in this chapter, each part 
removal time is generated by
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Known optimal results include balance 
measure F* = 0, hazardous part measure H* = 1, 
demanded part measure D* = 2, and part removal 
direction measure R* = 1.

A data set containing parts with equal part 
removal times and no precedence constraints 
will result in multiple optimum extreme points. 
Using probability theory (counting sample points 
using the generalized multiplication rule cover-
ing n operations), it can be seen in Table 2 (and 
detailed in McGovern & Gupta, 2004) that the 
number of solutions optimal in all objectives goes 
from less than 8.3% of n at n = 4, to 0.12% at n 
= 8, dropping to effectively 0% at n = 16; as n 
grows, the percentage of optimal solutions gets 
closer and closer to zero.

The final configuration of the benchmark as 
used here was 19 instances with instance size 
distributed from n = 8 to n = 80 in steps of |PRT| 
= 4. The size and range of the instances is con-
sidered appropriate, with small ns tested—which 
decreases the NWS value and tends to exaggerate 
less than optimal performance—as well as large, 
which demonstrates time complexity growth and 
efficacy changes with n.

H-K Heuristic

Heuristic Search Background

Exhaustive search techniques (e.g., pure depth-first 
or pure breadth-first) will fail to find a solution to 
any but the smallest instances within any practical 
length of time. Blind search, weak search, naïve 

Table 1. DLBP A Priori data for n = 12

 

Part ID 1 2 3 4 5 6 7 8 9 10 11 12
PRT 3 3 3 5 5 5 7 7 7 11 11 11
Hazardous 0 0 0 0 0 0 0 0 0 0 0 1
Demand 0 0 0 0 0 0 0 0 1 0 0 0
Direction 1 0 0 1 0 0 1 0 0 1 0 0
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search, and uninformed search are all terms used 
to refer to algorithms that use the simplest, most in-
tuitive method of searching through a search space, 
whereas informed search algorithms use heuristics 
to apply knowledge about the structure of the 
search space. An uninformed search algorithm 
is one that does not take into account the specific 
nature of the problem. This allows uninformed 
searches to be implemented in general, with the 
same implementation able to be used in a wide 
range of problems. Uninformed searches include 
exhaustive search and H-K. H-K seeks to take 
advantage of the benefits of uninformed search 
while addressing the exhaustive search drawbacks 
of runtime growth with instance size.

Heuristic Motivation and 
Introduction

Exhaustive search is optimal because it looks at 
every possible answer. While an optimal solution 
can be found, this technique is impractical for 
all but the simplest combinatorial problems due 
to the explosive growth in search time. In many 
physical search applications (e.g., antisubmarine 
warfare, search and rescue) exhaustive search is 
not possible due to time or sensor limitations. In 
these cases, it becomes practical to sample the 
search space and operate under the assumption 
that, for example, the highest point of land found 
during the conduct of a limited search is either 

is the highest point in a given search area or is 
reasonably near the highest point. The proposed 
search technique (McGovern & Gupta, 2004) in 
this chapter works by sampling the exhaustive 
solution set; that is, search the solution space in 
a method similar to an exhaustive search but in 
a pattern that skips solutions (conceptually simi-
lar to the STEP functionality in a FOR loop as 
found in computer programming) to significantly 
minimize the search space (Figure 3; the shading 
indicates solutions visited, the border represents 
the search space).

This pattern is analogous to the radar acqui-
sition search pattern known as “spiral scan,” 
the search and rescue pattern of the “expanding 
square,” or the antisubmarine warfare aircraft 
“magnetic anomaly detector (MAD) hunting 
circle.” Once the solution is generated, the space 
can be further searched with additional applica-
tions of the H-K heuristic (with modifications from 
the previous H-K) or the best-to-date solution can 
be further refined by performing subsequent local 
searches (such as 2-opt or smaller, localized H-
K searches). Depending on the application, H-K 
can be run once, multiple times on subsequent 
solutions, multiple times from the same starting 
point using different skip measure (potentially 
as a multiprocessor application using parallel 
algorithms or as a grid computing application), 
multiple times from a different starting point us-
ing the same skip measure (again, potentially as a 

Table 2. Comparison of possible solutions to optimal solutions for a given n using the DLBP A Priori 
data

n n! Number optimal in 
balance

Number optimal 
in all

Percentage optimal in 
balance

P e r c e n t a g e 
optimal in all

4 24 24 2 100.00% 8.33%
8 40,320 9,216 48 22.86% 0.12%
12 479,001,600 17,915,904 10,368 3.74% 0.00%
16 2.09228E+13 1.10075E+11 7,077,888 0.53% 0.00%
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multiprocessor or grid computing application), or 
followed up with an H-K or another, differing local 
search on the best or several of the best suboptimal 
solutions generated. While termination normally 
takes place after all sequences are generated for a 
given skip size, termination can also be effected 
based on time elapsed or once finding a solution 
that is within a predetermined bound. H-K can also 
be used as the first phase of a hybrid algorithm or 
to hot start another methodology (e.g., to provide 
the initial population in a GA). One interesting 
use for H-K is application to the unusual problem 
where quantifying a small improvement (i.e., a 
greedy decision, such as would be found in ant 
colony optimization where the ant agents build 
a solution incrementally and, therefore, need to 
know which of the available solution elements 
reflects an improvement) is not possible or is not 
understood, or where the incremental greedy 
improvements may not lead to a global optima. 
Finally, H-K would also be useful in quickly 
gathering a sampling of the solution space to 
allow for a statistical or other study of the data 
(e.g., H-K could enable the determination of the 
approximate worst-case and best-case solutions 
as well as solution efficacy indices mean, median, 
and mode).

The skip size ψ, or more generally ψk (the kth 
element’s skip measure; i.e., for the solution’s third 
element, visit every 2nd possible task for ψ3 = 2) 

can be as small as ψ = 1 or as large as ψ = n. Since 
ψ = 1 is equivalent to exhaustive search and ψ = 
n generates a trivial solution (it returns only one 
solution, that being the data in the same sequence 
as it is given to H-K, that is, PSk = 〈1, 2, 3, … , 
n〉; also, in the single-phase H-K this solution is 
already considered by any value of ψ), in general 
all skip values can be further constrained as

12 −≤≤ nk 				   (31)

Depending on structural decisions, H-K can 
take on a variety of forms, from a classical op-
timization algorithm in its most basic form, to a 
general evolutionary algorithm with the use of 
multiple H-K processes, to a biological or natural 
process algorithm by electing random functional-
ity. In order to demonstrate the method and show 
some of its limitations, in this chapter the most 
basic form of the H-K heuristic is used: one pro-
cess (though visiting the data twice, in forward 
and in reverse order), constant starting point of 
PSk = 〈1, 1, 1,…, 1〉 (since the solution set is a per-
mutation, there are no repeated items; therefore, 
the starting point is effectively PSk = 〈1, 2, 3,…, 
n〉), constant skip type (i.e., each element in the 
solution sequence is skipped in the same way), 
constant maximum skip size (although different 
skip sizes are used throughout each H-K run, and 
no follow-on solution refinement.

 

Figure 3. Exhaustive search space and the H-K search space and methodology
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The H-K Process and DLBP 
Application

As far as the H-K process itself, since it is a 
modified exhaustive search allowing for solu-
tion sampling, it searches for solutions similar 
to depth-first search iteratively seeking the next 
permutation iteration—allowing for skips in the 
sequence—in lexicographic order. In the basic 
H-K and with ψ = 2, the first element in the first 
solution would be 1, the next element considered 
would be 1, but since it is already in the solution, 
that element would be incremented and 2 would 
be considered and be acceptable. This is repeated 
for all of the elements until the first solution is 
generated. In the next iteration, the initial part 
under consideration would be incremented by 2 
and, therefore, 3 would be considered and inserted 
as the first element. Since 1 is not yet in the se-
quence, it would be placed in the second position, 
2 in the third, and so forth. For DLBP H-K this 
is further modified to test the proposed sequence 
part addition for precedence constraints. If all 
possible parts for a given solution position fail 
these checks, the remainder of the positions are 
not further inspected, the procedure falls back to 
the previously successful solution addition, incre-
ments it by 1, and continues. These processes are 
repeated until all allowed items have been visited 
in the first solution position (and by default, due 
to the nested nature of the search, all subsequent 
solution positions). For example, with n = 4, P = 
{1, 2, 3, 4}, and no precedence constraints, instead 
of considering the 4! = 24 possible permutations, 
only five are considered by the single-phase H-K 
with ψ = 2 and using forward-only data: PSk = 
〈1, 2, 3, 4〉, PSk = 〈1, 4, 2, 3〉, PSk = 〈3, 1, 2, 4〉, PSk 
= 〈3, 1, 4, 2〉, and PSk = 〈3, 4, 1, 2〉. With n = 5, P 
= {1, 2, 3, 4, 5}, and no precedence constraints, 
instead of considering the 5! = 120 possible per-
mutations, only 16 are considered by the single-
phase H-K with ψ = 2 and using forward-only 
data as demonstrated in Figure 4.

All of the parts are maintained in a tabu-type 
list. Each iteration of the DLBP H-K generated 
solution is considered for feasibility. If it is ulti-
mately feasible in its entirety, DLBP H-K then 
looks at each element in the solution and places 
that element using the Next-Fit (NF) rule (from 
the Bin-Packing problem application; once a bin 
has no space for a given item attempted to be 
packed into it, that bin is never used again even 
though a later, smaller item may appear in the list 
and could fit in the bin (see Hu & Shing, 2002). 
DLBP H-K puts the element under consideration 
into the current workstation if it fits. If it does not 
fit, a new workstation is assigned and previous 
workstations are never again considered. Although 
NF does not perform as well as First-Fit, Best-
Fit, First-Fit-Decreasing, or Best-Fit-Decreasing 
when used in the general Bin-Packing problem, it 
is the only one of these rules that will work with 

PSk = 〈1, 2, 3, 4, 5〉 
PSk = 〈1, 2, 5, 3, 4〉 
PSk = 〈1, 4, 2, 3, 5〉 
PSk = 〈1, 4, 5, 2, 3〉 
PSk = 〈1, 4, 5, 3, 2〉 
PSk = 〈3, 1, 2, 4, 5〉 
PSk = 〈3, 1, 4, 2, 5〉 
PSk = 〈3, 1, 4, 5, 2〉 
PSk = 〈3, 4, 1, 2, 5〉 
PSk = 〈3, 4, 1, 5, 2〉 
PSk = 〈3, 4, 5, 1, 2〉 
PSk = 〈5, 1, 2, 3, 4〉 
PSk = 〈5, 1, 4, 2, 3〉 
PSk = 〈5, 3, 1, 2, 4〉 
PSk = 〈5, 3, 1, 4, 2〉 
PSk = 〈5, 3, 4, 1, 2〉 

Figure 4. DLBP H-K results at n = 5 and ψ = 2
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a DLBP solution sequence due to the existence 
of precedence constraints (see McGovern & 
Gupta, 2005 for a DLBP implementation of First-
Fit-Decreasing). When all of the work elements 
have been assigned to a workstation, the process 

is complete and the balance, hazard, demand and 
direction measures are calculated. The best of all 
of the inspected solution sequences is then saved 
as the problem solution. Although the actual soft-
ware implementation for this study consisted of a 

Procedure DLBP_H-K { 
SET ISSk := 0 ∀ k∈P 
SET FS := 1 

 
PS1 := 1 to n, skip by 1 
 SET ISSPS1 := 1 
 

PS2 := 1 to n, skip by 2 
WHILE (ISSPS2 = = 1 ∨  

 PRECEDENCE_FAIL ∧  
 not at n) 

 Increment PS2 by 1 
 
IF ISSPS2 = = 1  
THEN SET FS := 0 

  ELSE SET ISSPS2 := 1 
   : 
   : 
  IF FS = = 1 

PSn := 1 to n skip by n 
WHILE (ISSPSn = =1 ∨ 

 PRECEDENCE_FAIL ∧ 
 not at n) 

    Increment PSn by 1 
 

IF ISSPSn = = 0  
THEN evaluate solution PS 

 : 
 : 

 IF FS = = 1  
THEN SET ISSPS2 := 0 

 ELSE SET FS := 1 
 

SET ISSPS1 := 0 
SET FS := 1 
 

} 

Figure 5. The DLBP H-K procedure
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very compact recursive algorithm, in the interest 
of clarity, the general DLBP H-K procedure is 
presented here as a series of nested loops (Figure 
5, where ISSk is the binary flag representing the 
tabu-type list; set to 1 if part k is in the solution 
sequence, and FS is the feasible sequence binary 
flag; set to 1 if the sequence is feasible).

Skip size affects various measures including 
the efficacy indices and time complexity. The 
general form of the skip-size to problem-size 
relationship is formulated as

kk n ∆−= 				    (32)

where ∆ψ represents the kth element’s delta skip 
measure; difference between problem size n and 
skip size ψk (i.e., for ∆ψ = 10 and n = 80, ψ = 
70).

Early tests of time complexity growth with 
skip size suggest another technique to be used 
as part of H-K search. Since any values of ψ that 
are larger than the chosen skip value for a given 
H-K instance were seen to take significantly less 
processing time, considering all larger skip values 
should also be considered in order to increase the 
search space at the expense of a minimal increase 
in search time. In other words, H-K can be run 
repeatedly on a given instance using all skip 
values from a smallest ψ (selected based upon 
time complexity considerations) to the largest 
(i.e., n – 1 per Formula (31)) without a signifi-
cant time penalty. In this case, any ψk would be 
constrained as

1−≤≤∆− nn kk   where 21 −≤∆≤ nk  	

1−≤≤∆− nn kk   where 21 −≤∆≤ nk  		  (33)

If this technique is used (as it is here), it should 
also be noted that multiples of ψ visit the same 
solutions; for example, for n = 12 and 2 ≤ ψ ≤ 10, 
the four solutions considered by ψ = 10 are also 
visited by ψ = 2 and ψ = 5.

In terms of time complexity, the rate of growth 
has been observed to be exponential in the in-
verse of ψ. The average-case time complexity of 
H-K is then listed as Ο(bb) in skip size, where b 
= 1/ψ. Due to the nature of H-K, the number of 
commands executed in the software do not vary 
based on precedence constraints, data sequence, 
greedy or probabilistic decision making, improved 
solutions nearby, and so forth, so the worst case 
is also Ο(bb), as is the best case (big-Omega of 
Ω(bb)), and, therefore, a tight bound exists, which 
is Θ(bb). As used in the Numerical Comparison 
section below (forward and reverse data, 1 ≤ ∆ψ 
≤ 10, and resulting skip sizes of n − 10 ≤ ψ ≤ n 
− 1), the average-case time complexity of DLBP 
H-K curve is listed as Ο(n2) or polynomial com-
plexity. The deterministic, single iteration nature 
of H-K also indicates that the process would be 
no faster than this, so it is expected that the time 
complexity lower bound is Ω(n2) and, therefore, 
the H-K appears to have an asymptotically tight 
bound of Θ(n2) as configured here.

Genetic Algorithm

GA Model Description

A genetic algorithm (a parallel neighborhood, 
stochastic-directed search technique) provides 
an environment where solutions continuously 
crossbreed, mutate, and compete with each other 
until they evolve into an optimal or near-optimal 
solution (Holland, 1975). Due to its structure and 
search method, a GA is often able to find a global 
solution, unlike many other heuristics that use hill 
climbing to find a best solution nearby resulting 
only in a local optima. In addition, a GA does 
not need specific details about a problem nor is 
the problem’s structure relevant; a function can 
be linear, nonlinear, stochastic, combinatorial, 
noisy and so forth.

GA has a solution structure defined as a 
chromosome, which is made up of genes and 
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generated by two parent chromosomes from the 
pool of solutions, each having its own measure 
of fitness. New solutions are generated from old 
using the techniques of crossover (sever parents 
genes and swap severed sections) Rx and mutation 
(randomly vary genes within a chromosome) Rm. 
Typically, the main challenge with any genetic 
algorithm implementation is determining a chro-
mosome representation that remains valid after 
each generation.

For DLBP the chromosome (solution) con-
sisted of a sequence of genes (parts). A pool, or 
population, of size N was used. Only feasible 
disassembly sequences were allowed as members 
of the population or as offspring. The fitness was 
computed for each chromosome using the method 
for solution performance determination (i.e., in 
lexicographic order using F, H, D, then R).

The time complexity is a function of the num-
ber of generations, the population size N, and the 
chromosome size n. As such, the runtime is seen 
to be on the order of n⋅N⋅(number of generations). 
Since both the population and the number of 
generations are considered to stay constant with 
instance size, the best-case time complexity of 
GA is seen to have an asymptotic lower bound of 
Ω(n). Because the worst-case runtime also requires 
no more processing time than T(n) ∝ n⋅N⋅(number 
of generations), the worst-case time complexity 
of GA has the asymptotic upper bound Ο(n), so 
GA therefore exhibits a tight time complexity 
bound of Θ(n).

DLBP-Specific Genetic Algorithm 
Architecture

The GA for DLBP was constructed as follows 
(McGovern & Gupta, 2007). An initial, feasible 
population was randomly generated and the fit-
ness of each chromosome in this generation was 
calculated. An even integer of Rx⋅N parents was 
randomly selected for crossover to produce Rx⋅N 
offspring (offspring make up (Rx⋅N⋅100)% of each 
generation’s population). (Note that often GA’s 

use fitness values rather than random selection for 
crossover; the authors found that random selection 
made creation of children that were duplicates of 
each other or of parents less likely and allowed for 
a more diverse population.) An elegant crossover, 
the precedence preservative crossover (PPX) 
developed by Bierwirth, Mattfeld, and Kopfer 
(1996) was used to create the offspring. As shown 
in Figure 6, PPX first creates a mask (one for each 
child, every generation). The mask consists of 
random 1s and 2s indicating which parent part 
information should be taken from. If, for example, 
the mask for child 1 reads 22121112, the first two 
parts (i.e., from left to right) in parent 2 would 
make up the first two genes of child 1 (and these 
parts would be stricken from the parts available to 
take from both parent 1 and 2); the first available 
(i.e., not stricken) part in parent 1 would make 
up gene three of child 1; the next available part 
in parent 2 would make up gene four of child 1; 
the next three available parts in parent 1 would 
make up genes five, six, and seven of child 1; the 
last part in parent 2 would make up gene eight of 
child 1. This technique is repeated using a new 
mask for child 2.

After crossover, mutation is randomly con-
ducted. Mutation was occasionally (based on 
the Rm value) performed by randomly selecting a 
single child then exchanging two of its disassembly 
tasks while ensuring precedence is preserved. 
The Rx⋅N least-fit parents are removed by sorting 
the entire parent population from worst-to-best 
based on fitness.

Since the GA saves the best parents from 
generation to generation and it is possible for 
duplicates of a solution to be formed using PPX, 
the solution set could contain multiple copies 
of the same answer resulting in the algorithm 
potentially becoming trapped in a local optima. 
This becomes more likely in a GA with solution 
constraints (such as precedence requirements) 
and small populations, both of which are seen 
in the study in this chapter. To avoid this, DLBP 
GA was modified to treat duplicate solutions as 
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if they had the worst fitness performance (highest 
numerical value), relegating them to replacement 
in the next generation. With this new ordering, 
the best unique (1 – Rx)⋅N parents were kept along 
with all of the Rx⋅N offspring to make up the next 
generation then the process was repeated.

DLBP-Specific GA Qualitative 
Modifications

DLBP GA was modified from a general GA in 
several ways (Figure 7). Instead of the worst por-
tion of the population being selected for crossover 
as is often the case in GA, in DLBP GA all of 
the population was (randomly) considered for 
crossover. This better enables the selection of 
nearby solutions (i.e., solutions similar to the best 
solutions to-date) common in many scheduling 
problems. Also, mutation was performed only on 
the children in DLBP GA, not the worst parents 
as is typical in a general GA. This was done to 
address the small population used in DLBP GA 

and to counter PPX’s tendency to duplicate parents. 
Finally, duplicate children are sorted in DLBP 
GA to make their deletion from the population 
likely since there is a tendency for the creation 
of duplicate solutions (due to PPX) and due to 
the small population saved from generation to 
generation.

DLBP-Specific GA Quantitative 
Modifications

While the matter of population sizing is a contro-
versial research area in evolutionary computing, 
here a small population was used (20) to minimize 
data storage requirements and simplify analysis 
while a large number of generations were used 
(10,000) to compensate for this small population 
while not being so large as to take an excessive 
amount of processing time. This was also done 
to avoid solving all cases to optimality since it 
was desirable to determine the point at which 
the DLBP GA performance begins to break 

Figure 6. PPX example
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down and how that breakdown manifests itself. 
A 60% crossover was selected based on test and 
analysis. Developmental testing indicated that a 
60% crossover provided better solutions and did 
so with one-third less processing time than, for 

example 90%. Previous assembly line balancing 
literature that indicated best results have typically 
been found with crossover rates of from 0.5 to 
0.7 also substantiated the selection of this lower 
crossover rate. A mutation was performed about 

Figure 7. The DLBP GA procedure

Procedure DLBP_GA { 
 INITIALIZE_DATA   {Load data: part removal times, etc.} 
 

SET count := 1   {count is the generation counter} 
 
 FOR N DO:     {Randomly create an initial population} 

DO: 
   RANDOMLY_CREATE_CHROMOSOME 
  WHILE (PRECEDENCE_FAIL) 
  CALC_FITNESS  {Establish the initial solution’s fitness} 
 
 SET num_parents := N * Rx  {Determine number of parents for reproduction} 
      {Ensure an even number of parents} 

SET num_parents := 2 * (num_parents / 2) 
{Note: num_parents is typed as an integer} 

DO:     {Run GA for MAX_GENERATIONS} 
  RANDOMIZE_PARENTS {Randomly order the parents for breeding} 
 

 FOR num_parents DO:  {Perform crossover using PPX} 
   CROSSOVER 
 
  IF FLIP(Rm) DO:   {FLIP equals 1 Rm % of the time, else 0} 

MUTATE_CHILD {Randomly select and mutate a child} 
 
  REMOVE_LEAST_FIT {Sort: best parents to the last positions} 
  REMOVE_REPEATS {Duplicate answers to the front and resort} 

CHILDREN_TO_POOL {Add children to the population} 
 
  FOR N DO: 

CALC_FITNESS {Calculate each solution’s fitness} 
 
  count := count + 1  {Next generation} 
 WHILE (count < MAX_GENERATIONS) 
 

SAVE the last chromosome as the best_solution 
} 
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one percent of the time. Although some texts 
recommend 0.01% mutation while applications 
in journal papers have used as much as 100% 
mutation, it was found that 1.0% gave excellent 
algorithm performance for the Disassembly Line 
Balancing Problem.

Numerical Comparison and 
Qualitative Analysis

The evolutionary algorithm and the uninformed 
heuristic were run on the DLBP A Priori experi-
mental instances (with size varying between 8 ≤ 
n ≤ 80) with the results comparatively analyzed 
in this section. For H-K, all cases were calculated 
using a varying delta skip of 1 ≤ ∆ψ ≤ 10 with 
the resulting skip sizes of n − 10 ≤ ψ ≤ n − 1; the 
software was set up so that it would not attempt 
any skip size smaller than ψ = 3 (to avoid ex-
haustive or near-exhaustive searches with small 
instances). In addition, the DLBP A Priori data 
sets were run with the data in forward and reverse 
for H-K. For GA, all tests were performed using 
a population size of 20, mutation rates of 1.0%, 
10,000 generations, and crossover rates of 60%. 
Note that, due to the averaging of the results given 
by the process with stochastic characteristics 
(DLBP GA), many of the reported results are not 
purely discrete.

Table-Based Qualitative 
Assessment

From Section 5.1, the table-based qualitative 
analysis tool is demonstrated. The DLBP H-K 
technique can be seen below (Table 3) on the 
DLBP A Priori data presented forward and re-
verse at n = 12 and 3 ≤ ψ ≤ 11 (note that without 
the minimum allowed value of ψ = 3, skip values 
would include 2 ≤ ψ ≤ 11). DLBP H-K was able to 
find a solution optimal in the number of worksta-
tions, balance, and hazard (though not demand 
or direction). The solution found came from the 
reverse set and consisted of NWS* = 3, F* = 0, H* 
= 1, D = 10 (optimal value is D* = 2), and R = 2 
(optimal value is R* = 1).

An example of a GA metaheuristic solution 
can be seen below with n = 12 (Table 4). While 
there is more than one optimal solution for the 
A Priori instances, GA was able to regularly 
find one of the multiple optimum extreme points 
(three workstations and F* = 0, H* = 1, D* = 2, 
and R* = 1).

Graph-Based Qualitative 
Assessment and Quantitative 
Analysis Using Efficacy Indices and 
Regression

Next, a qualitative comparison was performed us-
ing the graph-based format. Quantitative analysis 

Table 3. H-K solution using the A Priori instance at n = 12 and 3 ≤ ψ ≤ 11 (data presented in forward 
and reverse order) 

 

Part ID 12 2 5 8 11 1 4 7 10 9 6 3
PRT 11 3 5 7 11 3 5 7 11 7 5 3
Workstation 1 1 1 1 2 2 2 2 3 3 3 3
Hazardous 1 0 0 0 0 0 0 0 0 0 0 0
Demand 0 0 0 0 0 0 0 0 0 1 0 0
Direction 0 0 0 0 0 1 1 1 1 0 0 0
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was enabled first by calculating the efficacy indices 
and then through the experimental determination 
of average-case time complexity using linear or 
polynomial regression. Note that the curves also 
appear to rather sharp increases and decreases. 
This is due to a combination of discrete values 
being connected by straight lines (i.e., with no 
smoothing) and due to the scale of those param-
eters’ charts, rather than being indicative of any 
data anomalies.

The first study performed was a measure of 
each of the technique’s calculated number of work-
stations as compared to the optimal. As shown 
in Figure 8, both of the methods performed very 
well in workstation calculation, staying within 
2 workstations of optimum for all data set sizes 
tested. On the full range of data (8 ≤ n ≤ 80), 
DLBP H-K found solutions with NWS* worksta-
tions up to n = 12, then solutions with NWS* + 1 
workstations through data set 11 (n = 48), after 
which it stabilized at NWS* + 2. From Formula (25) 
H-K’s efficacy index in number of workstations 
started at an optimal EINWS = 100%, dropped to 
a low of EINWS = 92%, then continuously climbed 
through to EINWS = 97% with an efficacy index 
sample mean in number of workstations of NWSEI  
= 96%. DLBP GA’s efficacy index in number of 
workstations went from a high of 100%, down 
to 94% then stabilized between 97% and 98%. 
Overall, as given by Formula (26), DLBP GA 

shows an efficacy index sample mean in number 
of workstations of 97%.

In terms of the calculated measure of balance, 
again, both of the methods are seen to perform 
very well and significantly better than the worst 
case (as given by formula (7)). Best case is found 
uniformly at F = 0, as illustrated by Figure 9. 
However, examining the balance in greater 
detail provides some insight into the different 
techniques.

DLBP H-K and GA tend to decrease similarly 
and in a step function fashion (note, however, 
that even their normalized balance performance 
actually improves overall with instance size as 
a percentage of worst case as indicated by their 
improved efficacy indices with instance size; see 
Figure 10). This is to be expected; for H-K this has 
to do with the fact that as the instance size grows, 
a lower and lower percentage of the search space 
is investigated (assuming the skip size range is not 
allowed to increase with instance size, which is 
the case in this chapter). For GA, efficacy falls off 
with instance size because (unlike, for example, 
many hill-climbing and r-optimal processes that 
continue to search until no better nearby solution 
can be found) GA is set up to terminate after a 
fixed number of generations (in addition, GA’s 
population does not increase with increases in 
instance size).

While increases in H-K’s balance measure are 
seen with increases in data set size, as a percentage 

Table 4. Typical GA solution using the A Priori instance at n = 12

 

Part ID 12 9 5 3 8 11 6 2 4 10 7 1
PRT 11 7 5 3 7 11 5 3 5 11 7 3
Workstation 1 1 1 1 2 2 2 2 3 3 3 3
Hazardous 1 0 0 0 0 0 0 0 0 0 0 0
Demand 0 1 0 0 0 0 0 0 0 0 0 0
Direction 0 0 0 0 0 0 0 0 1 1 1 1
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Figure 8. Workstation calculations for each DLBP combinatorial optimization method

Figure 9. Detailed DLBP combinatorial optimization methods’ balance performance
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of the overall range from best case to worst case, 
the normalized balance measure tends to decrease 
(i.e., improve) with increases in the data set size. 
The normalized balance efficacy index dropped 
from a high of EIF = 100% to a low of EIF = 85% 
at data set 3 (n = 16) then slowly climbed to EIF = 
92% giving a sample mean of FEI  = 92%. With 
DLBP GA, the normalized balance efficacy index 
started as high as 100% then dropped to 93% 
to 95%; it was never lower than 89% and had a 
sample mean of 94%. An instance size of n = 16 
was seen to be the point at which the optimally 
balanced solution was not consistently found for 
the selected N and number of generations. Al-
though DLBP GA’s performance decreased with 
instance size, it can be seen in Figure 10 that the 
solution found, while not optimal, was very near 
optimal and when normalized, roughly paralleled 
the optimal balance curve.

The hazard measure results are as expected 
since hazard performance is designed to be defer-
ential to balance and affected only when a better 
hazard measure can be attained without adversely 
affecting balance. The hazard measure tends to get 
worse with problem size using DLBP GA, with 
its efficacy index dropping relatively constantly 
from 100% to 60% and having a sample mean of 

HEI = 84%. The hazardous part was regularly 
suboptimally placed by DLBP H-K as well. Haz-
ardous-part placement stayed relatively consistent 
with problem size (though effectively improving 
as compared to the worst case, as illustrated by 
Figure 11). The hazard measure’s efficacy index 
fluctuates, similarly to a sawtooth wave function, 
between EIH = 57% and EIH = 100%, giving a 
sample mean of HEI  = 90%.

With DLBP GA, the demand measure gets 
worse at a slightly more rapid rate than the haz-

Figure 10. Normalized DLBP combinatorial optimization methods’ balance performance
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ardous-part measure—as is expected due to the 
multicriteria priorities—with its efficacy index 
dropping from 100% to 45% (with a low of 42%) 
and having a sample mean of DEI = 78% (Figure 
12). DLBP H-K also suboptimally placed the 
high-demand part, and also at a higher rate than 
the hazardous part. Its efficacy index fluctuates 
between EID = 7% and EID = 103% (due to better 
than optimal placement in position k = 1 at the ex-
pense of hazard placement). Its resulting demand 
measure sample mean is DEI  = 49%.

With part removal direction structured as to 
be deferential to balance, hazard, and demand, 
the two methodologies were seen to decrease in 
performance in a haphazard fashion. This decrease 
in performance is seen both when compared to the 
best case and when compared to the worst case 
(Figure 13). Again, these results are as expected 
due the prioritization of the multiple objectives. 

Though the part removal direction efficacy gets 
as high as EIR = 86% with the H-K implementa-
tion, by data set 5 (n = 24) it has dropped to EIR = 
0% and never rises higher again than EIR = 43%, 
resulting in a sample mean of REI  = 20%. Us-
ing the GA, the part removal direction measure 
gets worse at a more rapid rate than the demand 
measure, again attributed to the multicriteria 
priorities, with its efficacy index dropping as low 
as 17% (at data set 15 where n = 64) and having 
a sample mean of REI = 49%.

Finally, time complexity was examined using 
the A Priori data. Both of the techniques were 
seen to be very fast (Figure 14) and each is seen 
to be faster than third order.

Using DLBP GA, runtime increased very 
slowly with instance size. A linear model was used 
to fit the curve with the linear regression equation 
calculated to be T(n) = 0.0327n + 1.5448 with a 

Figure 11. DLBP combinatorial optimization methods’ hazard performance

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

H
az

ar
d 

M
ea

su
re

 (o
pt

im
al

 a
t 1

)

GA

H-K

Worst Case



178  

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Figure 12. DLBP combinatorial optimization methods’ demand performance

Figure 13. DLBP combinatorial optimization methods’ part removal direction performance
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coefficient of determination of 0.9917 indicating 
99.17% of the total variation is explained by the 
calculated linear regression curve. The growth of 
0.0327n + 1.5448 provides an experimentally de-
rived result for the average-case time complexity 
of DLBP GA on the DLBP A Priori data sets as 
Ο(n) or linear complexity (Rosen, 1999). This is 
in agreement with the theoretical calculations.

With DLBP H-K, the regression equation was 
calculated to be T(n) = 0.0033n2 − 0.0002n + 0.2893. 
The small coefficients are indicative of the slow 
runtime growth in instance size. The coefficient of 
determination is calculated to be 0.9974, indicat-
ing 99.74% of the total variation is explained by 
the calculated regression curve. With a 2nd-order 
polynomial regression model used to fit the H-K 
curve, the average-case time complexity of DLBP 
H-K curve (with forward and reverse data, 1 ≤ ∆ψ 
≤ 10, and resulting skip sizes of n − 10 ≤ ψ ≤ n 
− 1) is listed as Ο(n2) or polynomial complexity. 

The deterministic, single iteration nature of H-K 
also indicates that the process would be no faster 
than this, so it is expected that the time complex-
ity lower bound is Ω(n2) and, therefore, the H-K 
appears to have an asymptotically tight bound of 
Θ(n2) as configured here. This empirical result is 
also in agreement with the theoretical complexity 
determination.

The runtimes can be examined in greater detail 
in Figure 15. While DLBP GA was seen to be 
very fast due to its linear growth, at some point 
it may be necessary to increase GA’s population 
or number of generations to allow for the genera-
tion of adequate solutions and this will of course 
increase its runtime. DLBP H-K was also very 
fast, even with ∆ψ varying from 1 to 10 and with 
forward and reverse data runs (the anomaly seen 
in the H-K curve in Figure 15 is due to a software 
rule that dictated that all ψ could be as small as n 
– 10, but no less than ψ = 3, to prevent exhaustive 

Figure 14. Time complexity of DLBP combinatorial optimization methods
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or near-exhaustive searches at small n). The H-K 
process grows approximately exponentially in 1/ψ, 
taking, for example from 0.02 seconds at ψ = 5 
(actually 5 ≤ ψ ≤ 11) up to just under 20 seconds 
at ψ = 2 (i.e., 2 ≤ ψ ≤ 11 and 19.34 seconds) with 
n = 12 and forward and reverse data (exhaustive 
search was seen to take almost 25 minutes (24.61 
minutes) on the same size data).

Although less than optimal, these results are 
not unusual for heuristics run against this data 
set. These suboptimal results are not indicative 
of poor heuristic performance but are, more 
likely, indicative of a successful DLBP A Priori 
benchmark data set design. The DLBP A Priori 
benchmark data is especially designed to chal-
lenge the solution-finding ability of a variety 
of combinatoric solution-generating techniques 
to enable a thorough quantitative evaluation of 
various method’s performances in different areas 

(McGovern & Gupta, 2004). Suboptimal solutions 
typically result when this specially designed set 
of instances is processed, even at seemingly small 
n values. For each of these methodologies, their 
DLBP-specific engineering element of searching 
exclusively for precedence-preserving solution 
n-tuples means that the inclusion or addition of 
precedence constraints will reduce the search 
space and increasingly move any of these methods 
towards the optimal solution. 

A smaller ψ or (as with GA and other search 
techniques) the inclusion of precedence constraints 
will increasingly move the DLBP H-K method to-
wards the optimal solution. The time complexity 
performance of DLBP H-K provides the tradeoff 
benefit with the technique’s near-optimal perfor-
mance, demonstrating the moderate increase in 
time required with problem size, which grows 
markedly slower than the exponential growth of 

Figure 15. Detailed time complexity of DLBP combinatorial optimization methods
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exhaustive search. Runtime performance can be 
improved by increasing skip size and by running 
the data in one direction only while the opposite 
(i.e., decreasing skip size and running different 
versions of the data, including running the data 
in forward and reverse order) would be expected 
to increase solution efficacy. Note that, as a newly 
developed methodology, other modifications may 
decrease runtime and/or increase solution efficacy 
as well. With DLBP GA runtime performance 
can be improved by reducing the number of 
generations or reducing the population, while 
the opposite is true for improving other measures 
of performance; that is, increase the number of 
generations or increase the population to improve 
efficacy indices.

Each of the collected quantitative values was 
then compiled into one table for reference and 
comparison (Table 5). This table contains each 
of the combinatorial optimization methodologies 
researched here and lists their number of worksta-
tions, balance, hazard, demand and part removal 
direction sample mean efficacy indices; regression 
model average-case experimentally determined 
time complexity; and associated asymptotic upper 
bound (experimentally determined average case 
using the DLBP A Priori data).

The shading provides a quick reference to 
performance, with darker shades indicating wors-
ening performance. While Exhaustive Search is 
included in the table, none of its row elements are 
considered for shading since its purpose in the 
table is as the benchmark for comparison. Note 
that the balance measure sample mean efficacy 

index is based on the normalized balance. This is 
done in the interest of providing a more appropri-
ate and consistent scale across the table.

Future Directions

Directions for future research can be described 
as follows:

•	 It may be of interest to vary the multicriteria 
ordering of the objectives; two possibili-
ties include a re-ordering of the objectives 
based on expert domain knowledge, and a 
comparison of all permutations of the ob-
jectives in search of patterns or unexpected 
performance improvements or decreases

•	 While the multiple-criteria decision making 
approach used here made use of preemptive 
goal programming, many other methodolo-
gies are available and should be considered 
to decrease processing time, for an overall 
or selective efficacy improvement, or to 
examine other promising methods including 
weighting schemes

•	 It may be of interest to make use of the 
promise of H-K in generating uninformed 
solutions from throughout the search space 
through the use of H-K to hot start GA

•	 Throughout the research, complete disas-
sembly was assumed; while this is of great 
theoretical interest (since it allows for a 
worst-case study in terms of problem com-
plexity and it provides consistency across 

Table 5. Summary of quantitative measures for both methodologies

 

 NWSEI  )(normFEI  HEI  DEI  REI  T(n) big-Oh 
Exhaustive 100% 100% 100% 100% 100% 1.199n! (n!) 
GA 97% 94% 84% 78% 49% 0.033n (n) 
H-K 96% 92% 90% 49% 20% 0.003n2 (n2) 
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the problem instances and methodologies), 
in practical applications it is not necessarily 
desired, required, practical, or efficient—
recommend that future studies consider 
the more applied problem that allows for 
incomplete or partial disassembly

•	 Per the prior recommendation and an earlier 
one, different multicriteria ordering of the 
objectives could simplify the determination 
of the optimal level of incomplete disassem-
bly; for example, if the main objective is to 
remove several demanded parts of a product 
containing hundreds of parts, by making the 
demand measure a higher priority objective 
than the balance, it may be found that these 
parts can be removed relatively early on in 
the disassembly process thereby allowing 
the process to terminate significantly earlier 
in the case of partial disassembly

This concludes some suggestions for future 
research. In addition to the items listed above, any 
further developments and applications of recent 
methodologies to multicriteria decision making, 
the H-K algorithm or GA or the Disassembly Line 
Balancing Problem that will help to extend the 
research in these areas may be appropriate.

Conclusion

In this chapter, a new multi-objective optimization 
problem was reviewed and used to demonstrate 
the development of several performance assess-
ment techniques and the use of lexicographic 
goal programming for comparison and analysis 
of combinatoric search methodologies. From the 
field of combinatorial optimization, an evolution-
ary algorithm and an uninformed general-purpose 
search heuristic were selected to demonstrate 
these tools. Quantitative and qualitative com-
parison was performed using tables, graphs 
and efficacy measures with varying instance 
sizes and using exhaustive search as a time and 

performance benchmark. Each of the methodolo-
gies performed very well—though consistently 
suboptimally—with the different performance 
assessment techniques demonstrating a variety 
of performance subtleties that show no one tech-
nique to be ideal in all applications. While these 
results are solely dependent on the A Priori data 
set instances used, this data set appears to have 
successfully posed—even with multiple optimum 
extreme points—a nontrivial challenge to the 
methodologies and in all instance sizes, providing 
at least an initial indication that the data set does 
meet its design expectations and does not contain 
any unforeseen nuances that would render it a 
weak benchmark for this type of NP-complete 
combinatorial problem.
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