
Multi-Objective
Optimization in
Computational
Intelligence:
Theory and Practice

Lam Thu Bui
University of New South Wales, Australia

Sameer Alam
University of New South Wales, Australia

Hershey • New York
Information science reference

Acquisitions Editor:		 Kristin Klinger
Development Editor:		 Kristin Roth
Senior Managing Editor: 	 Jennifer Neidig
Managing Editor:		 Jamie Snavely
Assistant Managing Editor:	 Carole Coulson
Copy Editor:		 Erin Meyer
Typesetter: 		 Amanda Appicello
Cover Design:		 Lisa Tosheff
Printed at:			 Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Multi-objective optimization in computational intelligence : theory and practice / Lam Thu Bui and Ricardo Sameer Alam, editors.

 p. cm.

 Summary: “This book explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues
including combinatorial, real-valued, dynamic, and noisy problems. It provides scholars, academics, and practitioners with a fundamental,
comprehensive collection of research on multi-objective optimization techniques, applications, and practices”--Provided by publisher.

 ISBN-13: 978-1-59904-498-9 (hardcover)

 ISBN-13: 978-1-59904-500-9 (e-book)

 1. Computational intelligence. 2. Evolutionary computation. 3. Mathematical optimization. 4. Artificial intelligence. I. Bui, Lam Thu. II.
Alam, Ricardo Sameer.

 Q342.M85 2008

 519.6--dc22

 2007040640

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

 151

Chapter VI
Lexicographic Goal

Programming and Assessment
Tools for a Combinatorial

Production Problem
Seamus M. McGovern

U.S. DOT National Transportation Systems Center, USA

Surendra M. Gupta
Northeastern University, USA

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

NP-complete combinatorial problems often necessitate the use of near-optimal solution techniques includ-
ing heuristics and metaheuristics. The addition of multiple optimization criteria can further complicate
comparison of these solution techniques due to the decision-maker’s weighting schema potentially mask-
ing search limitations. In addition, many contemporary problems lack quantitative assessment tools,
including benchmark data sets. This chapter proposes the use of lexicographic goal programming for use
in comparing combinatorial search techniques. These techniques are implemented here using a recently
formulated problem from the area of production analysis. The development of a benchmark data set and
other assessment tools is demonstrated, and these are then used to compare the performance of a genetic
algorithm and an H-K general-purpose heuristic as applied to the production-related application.

Introduction

More and more manufacturers are acting to
recycle and remanufacture their post-consumed

products due to new and more rigid environmen-
tal legislation, increased public awareness, and
extended manufacturer responsibility. A crucial
first step is disassembly. Disassembly is defined

152

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

as the methodical extraction of valuable parts,
subassemblies, and materials from discarded
products through a series of operations. Recently,
disassembly has gained a great deal of attention
in the literature due to its role in environmen-
tally conscious manufacturing. A disassembly
line system faces many unique challenges; for
example, it has significant inventory problems
because of the disparity between the demands
for certain parts or subassemblies and their
yield from disassembly. These many challenges
are reflected in its formulation as a multicriteria
decision making problem.

Line balancing (ordering assembly/disassem-
bly tasks on a line to achieve some objective) is
critical in minimizing the use of valuable resources
(e.g., time and money) invested and in maximizing
the level of automation and the quality of parts or
materials recovered (Figure 1). The Disassembly
Line Balancing Problem (DLBP) seeks a sequence
of parts for removal from an end of life product
that minimizes the resources for disassembly and
maximizes the automation of the process and
the quality of the parts or materials recovered.
This chapter first mathematically models the
multicriteria DLBP, which belongs to the class
NP-complete, necessitating use of specialized
solution techniques. Combinatorial optimization
is an emerging field that combines techniques from
applied mathematics, operations research, and
computer science to solve optimization problems
over discrete structures. Due to the suboptimal
nature of these searches, a method is needed to
access different combinatorial optimization tech-
niques. Lexicographic goal programming is pro-
posed to provide a hierarchical search structure,
while quantitative tools including a benchmark
data set are introduced. The DLBP is then solved
using two combinatorial optimization methods:
a genetic algorithm (GA) and the hunter-killer
(H-K) general-purpose heuristic.

Literature Review

Key to addressing any engineering problem is to
understand how complex or easy it is, what it shares
with similar problems, and appropriate methods
to obtain reasonable solutions. For these reasons,
a background in optimization and algorithms is
valuable. Tovey (2002) provides a well-structured
review of complexity, NP-hardness, NP-hardness
proofs (including the concise style of Garey &
Johnson, 1979), typical NP-hard problems, the
techniques of specialization, forcing, padding,
and gadgets, mathematical programming versus
heuristics, and other complexity classifications.
Rosen (1999) provides a useful text in the general
area of discrete mathematics including set theory,
logic, algorithms, graph theory, counting, set
theory and proofs. Papadimitriou and Steiglitz
(1998) is the de-facto text on combinatorial optimi-
zation as is Garey and Johnson (1979) in the area
of NP-completeness. Holland (1975) is credited
with developing the genetic algorithm. Osman and
Laporte (1996) provide a well-researched paper
on all forms of metaheuristics, the basic concepts
of each, and references to applications. A follow-
on paper by Osman (2004) is more compact and
also more current.

A major part of manufacturing and assembly
operations, the assembly line is a production line
where material moves continuously at a uniform
rate through a sequence of workstations where
assembly work is performed. With research pa-
pers going back to the 1950’s, the Assembly Line
Balancing problem is well defined and fairly well
understood. While having significant differences
from assembly line balancing, the recent devel-
opment of DLBP requires that related problems
be fully investigated and understood in order to
better define DLBP and to obtain guidance in the
search for appropriate methodologies to solve it.
Gutjahr and Nemhauser (1964) first described a
solution to the Assembly Line Balancing prob-

 153

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

lem, while Erel and Gokcen (1964) developed a
modified version by allowing for mixed-model
lines (assembly lines used to assemble different
models of the same product). Suresh, Vinod, and
Sahu (1996) first presented a genetic algorithm to
provide a near-optimal solution to the Assembly
Line Balancing problem. Tabu search is used in
balancing assembly lines in Lapierre, Ruiz, and
Soriano (2006) using SALB-I with instances from
the literature (Arcus 1 and 2) and a case study from
industry. Hackman, Magazine, and Wee (1989)
proposed a branch-and-bound heuristic for the
SALB-I problem. Ponnambalam, Aravindan, and
Naidu (1999) compared line-balancing heuristics
with a quantitative evaluation of six assembly line
balancing techniques.

Many papers have discussed the different
aspects of product recovery. Brennan, Gupta,
and Taleb (1994) and Gupta and Taleb (1994)
investigated the problems associated with disas-
sembly planning and scheduling. Torres, Gil,
Puente, Pomares, and Aracil (2004) reported a
study for nondestructive automatic disassembly
of personal computers. Gungor and Gupta (1999b,
1999c, 2002, 2001) presented the first introduction
to disassembly line balancing and developed an
algorithm for solving the DLBP in the presence
of failures with the goal of assigning tasks to

workstations in a way that probabilistically mini-
mizes the cost of defective parts. For a review of
environmentally conscious manufacturing and
product recovery see Gungor and Gupta (1999a).
For a comprehensive review of disassembly se-
quencing see Lambert (2003) and Lambert and
Gupta (2005). McGovern, Gupta, and Kamarthi
(2003) first proposed combinatorial optimization
techniques for the DLBP.

Modeling the Multi-criteria
Production Problem

The desired solution to a DLBP instance consists
of an ordered sequence (i.e., n-tuple) of work ele-
ments (also referred to as tasks, components, or
parts). For example, if a solution consisted of the
eight-tuple 〈5, 2, 8, 1, 4, 7, 6, 3〉, then component
5 would be removed first, followed by component
2, then component 8, and so on.

While different authors use a variety of defi-
nitions for the term “balanced” in reference to
assembly (Elsayed & Boucher, 1994) and disas-
sembly lines, we propose the following definition
(McGovern et al., 2003; McGovern & Gupta, 2003)
that considers the total number of workstations
NWS and the station times (i.e., the total process-

1 2 3 4

6
3
2

1

4

5
7

8

9

10

11

ST ST ST ST ST51 2 3 4

6
3
2

1

4

5
7

8

9

10

11

ST ST ST ST ST

6
3
2

1

4

5
7

8

9

10

11

ST ST ST ST ST5

Figure 1. Multicriteria selection procedure

154

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

ing time requirement in workstation j) STj; this
definition will be used consistently throughout
this chapter:

Definition: A disassembly line is optimally bal-
anced when the fewest possible number of work-
stations is needed and the variation in idle times
between all workstations is minimized. This is
mathematically described by

Minimize NWS	

then

Minimize [max (STx) − min (STy)] ∀ x, y∈{1, 2,…,
NWS}

This is done while meeting any constraints,
including precedence constraints. Line balanc-
ing can be visualized in Figure 1 with the boxes
representing workstations (five here), the total
height of the boxes indicating cycle time CT (the
maximum time available at each workstation),
the numbered boxes representing each part (1
through 11 here) and proportionate in height to
each part removal time, and the gray area indica-
tive of the idle time.

Minimizing the sum of the workstation idle
times I, which will also minimize the total number
of workstations, is described by

∑
=

−=
NWS

j
jSTCTI

1

)((1)

Line balancing seeks to achieve perfect balance
(i.e., all idle times equal to zero). When this is
not achievable, either Line Efficiency (LE) or the
Smoothness Index (SI) is often used as a perfor-
mance evaluation tool (Elsayed & Boucher, 1994).
SI rewards similar idle times at each workstation,
but at the expense of allowing for a large (subop-

timal) number of workstations. This is because SI
compares workstation elapsed times to the largest
STj instead of to CT. (SI is very similar in format
to the sample standard deviation from the field of
statistics, but using max(STj) | j∈{1, 2,…, NWS}
rather than the mean of the station times.) LE re-
wards the minimum number of workstations but
allows unlimited variance in idle times between
workstations because no comparison is made
between STjs. The balancing method developed
by McGovern et al. (2003; McGovern & Gupta,
2003) seeks to simultaneously minimize the
number of workstations while ensuring that idle
times at each workstation are similar, though at the
expense of the generation of a nonlinear objective
function. A resulting minimum numerical value
is the more desirable solution, indicating both a
minimum number of workstations and similar
idle times across all workstations. The measure
of balance F is represented as

∑
=

−=
NWS

j
jSTCTF

1

2)((2)

Note that mathematically, Formula (2) effec-
tively makes Formula (1) redundant due to the
fact that it concurrently minimizes the number
of workstations. This new method should be ef-
fective with traditional assembly line balancing
problems as well.

Theorem: Let PRTk be the part removal time for
the kth of n parts where CT is the maximum amount
of time available to complete all tasks assigned to
each workstation. Then for the most efficient dis-
tribution of tasks, the minimum (optimal) number
of workstations, NWS* satisfies

NWS* ≥
















∑
=

CT

PRT
n

k
k

1
			 (3)

 155

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Proof:	 If the inequality is not satisfied, then
there must be at least one workstation completing
tasks requiring more than CT of time, which is a
contradiction.		 �

Subsequent bounds are shown to be true in a
similar fashion and are presented throughout the
chapter without proof.

The upper bound (worst case) for the number
of workstations is given by

NWSnom = n				 (4)

Therefore

















∑
=

CT

PRT
n

k
k

1 ≤ NWS ≤ n		 (5)

The lower bound on F is given by

*
2

*
* NWS

NWS
IF ⋅






≥

		
(6)

while the upper bound is described by

∑
=

−=
n

k
knom PRTCTF

1

2)(
		

(7)

therefore

∑
=

−≤≤⋅





 n

k
kPRTCTFNWS

NWS
I

1

2*
2

*)(
	

						
(8)

A hazard measure was developed to quantify
each solution sequence’s performance, with a
lower calculated value being more desirable. This
measure is based on binary variables that indicate
whether a part is considered to contain hazardous

material (the binary variable is equal to one if the
part is hazardous, else zero) and its position in
the sequence. A given solution sequence hazard
measure is defined as the sum of hazard binary
flags multiplied by their position in the solution
sequence, thereby rewarding the removal of haz-
ardous parts early in the part removal sequence.
This measure H is represented as

)(
1
∑
=

⋅=
n

k
PS k

hkH




=
otherwise
hazardous

h
kPS ,0

,1

)(
1
∑
=

⋅=
n

k
PS k

hkH




=
otherwise
hazardous

h
kPS ,0

,1

		 (9)

where PSk identifies the kth part in the solution
sequence; that is, for solution 〈3, 1, 2〉, PS2
= 1. The lower bound on the hazardous part
measure is given by

∑
=

=
||

1

*
HP

p
pH

				
(10)

where the set of hazardous parts is defined as

HP = {k : hk ≠ 0 ∀ k ∈ P}		 (11)

where P set of n part removal tasks, and its car-
dinality can be calculated with

∑
=

=
n

k
khHP

1

|| 				 (12)

For example, a product with three hazardous
parts would give an H* value of 1 + 2 + 3 = 6.
The upper bound on the hazardous part measure
is given by

∑
+−=

=
n

HPnp
nom pH

1|| 			
(13)

156

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

or alternatively

|||)|(HPHPnHnom −⋅= 		 (14)

For example, three hazardous parts in a product
having a total of twenty would give an Hnom value
of 18 + 19 + 20 = 57 or equivalently, Hnom = (20 ⋅
3) – 3 = 60 – 3 = 57. Formulae (10), (13), and (14)
are combined to give

∑
=

||

1

HP

p
p ≤ H ≤ ∑

+−=

n

HPnp
p

1||

 = |||)|(HPHPn −⋅

						 (15)

Also, a demand measure was developed to
quantify each solution sequence’s performance,
with a lower calculated value being more desirable.
This measure is based on positive integer values
that indicate the quantity required of this part after
it is removed—or zero if it is not desired—and
its position in the sequence. Any given solution
sequence demand measure is defined as the sum
of the demand value multiplied by their position
in the sequence, rewarding the removal of high
demand parts early in the part removal sequence.
This measure D is represented as

)(
1
∑
=

⋅=
n

k
PS k

dkD kPS PSd
k

∀Ν∈ ,

)(
1
∑
=

⋅=
n

k
PS k

dkD kPS PSd
k

∀Ν∈ , 			 (16)

The lower bound on the demand measure (D*)
is given by Formula (16) where

nPSPSPS ddd ≥≥≥ ...
21 		 (17)

For example, three parts with demands of
4, 5, and 6 respectively would give a best-case
value of (1 ⋅ 6) + (2 ⋅ 5) + (3 ⋅ 4) = 28. The upper
bound on the demand measure (Dnom) is given by
Formula (16) where

nPSPSPS ddd ≤≤≤ ...
21

		 (18)

For example, three parts with demands of 4, 5
and 6 respectively would give a worst-case value
of (1 ⋅ 4) + (2 ⋅ 5) + (3 ⋅ 6) = 32.

Finally, a direction measure was developed to
quantify each solution sequence’s performance,
with a lower calculated value indicating minimal
direction changes and a more desirable solution.
This measure is based on a count of the direction
changes. Integer values represent each possible
direction (typically r = {+ x, − x, + y, − y, + z,
− z}; in this case |r| = 6). These directions are
expressed as















−−
++
−−
++
−−
++

=

zdirection
zdirection
ydirection
ydirection
xdirection
xdirection

r
kPS

,3
,3
,2
,2
,1
,1

	 (19)

and are easily expanded to other or different direc-
tions in a similar manner. The direction measure
R is represented as

∑
−

=

=
1

1

n

k
kRR



 ≠

= +

otherwise

rr
R kk PSPS

k ,0

,1
1

∑
−

=

=
1

1

n

k
kRR



 ≠

= +

otherwise

rr
R kk PSPS

k ,0

,1
1

		
(20)

The lower bound on the direction measure
is given by

1||* −= rR 				 (21)

For example, for a given product containing
six parts that are installed/removed in directions
rk = (– y, + x, – y, – y, + x, + x) the resulting best-

 157

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

case value would be 2 – 1 = 1 (e.g., one possible
R* solution containing the optimal, single-change
of product direction would be: 〈– y, – y, – y, + x,
+ x, + x〉). In the specific case where the number
of unique direction changes is one less than the
total number of parts n, the upper bound on the
direction measure would be given by

|| rRnom = where 1|| −= nr 	 (22)

Otherwise, the measure varies depending on
the number of parts having a given removal direc-
tion and the total number of removal directions.
It is bounded by

1|| −≤≤ nRr nom where 1|| −< nr

						 (23)

For example, six parts installed/removed in
directions rk = (+ x, + x, + x, – y, + x, + x) would
give an Rnom value of 2 as given by the lower bound
of Formula (23) with a solution sequence of 〈+ x,
+ x, – y, + x, + x, + x〉. Six parts installed/removed
in directions rk = (– y, + x, – y, – y, + x, + x) would
give an Rnom value of 6 – 1 = 5 as given by the upper
bound of Formula (23) with a solution sequence
of 〈– y, + x, – y, + x, – y, + x〉 for example.

In the special case where each part has a unique
removal direction, the measures for R* and Rnom
are equal and are given by

1* −== nRR nom where nr =||

1* −== nRR nom where nr =|| 			 (24)

Note that the optimal and nominal hazard,
demand, and direction formulae are dependent
upon favorable precedence constraints that will
allow for generation of these optimal or nomi-
nal measures. Finally, note that McGovern and
Gupta (2006a) have proven that the DLBP is
NP-complete.

The combinatorial optimization techniques
described here make use of these many criteria

in a lexicographic form (detailed in the next
section) to address the multicriteria aspects of
DLBP. Since measure of balance is the primary
consideration in this chapter, additional objec-
tives are only considered subsequently; that is,
the methodologies first seek to select the best
performing measure of balance solution; equal
balance solutions are then evaluated for hazardous
part removal positions; equal balance and hazard
measure solutions are evaluated for high-demand
part removal positions; and equal balance, hazard
measure and high-demand part removal position
solutions are evaluated for the number of direc-
tion changes. This priority ranking approach was
selected over a weighting scheme for its simplicity,
ease in reranking the priorities, ease in expanding
or reducing the number of priorities, due to the
fact that other weighting methods can be readily
addressed at a later time, and primarily to enable
unencumbered efficacy (a method’s effectiveness
in finding good solutions) analysis of the combi-
natorial optimization methodologies and problem
data instances under consideration.

Lexicographic Goal
Programming for Use in
Solution Methodology
Evaluation

One of the ways in which the complexity of
DLBP manifests itself is with the multiple, often
conflicting objectives (as defined in the previous
section). The field of multiple-criteria decision
making (MCDM) provides a variety of means
for addressing the selection of a solution where
several objectives exist. The bulk of MCDM
methods involve multicriteria versions of linear
programming (LP) problems. Since DLBP re-
quires integers exclusively as its solution, it cannot
be formulated as an LP. Additionally, since the
objective described by Formula (2) is nonlinear,
DLBP is not linear either (a requirement of LP,
though this can be remedied using a version of the

158

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

descriptions in the previous formal Definition).
Also, many MCDM methods rely on weighting.
These weights are in proportion to the importance
of each objective. Weights were not desirable for
this study since any results would be expected to
be influenced by the weights selected. While this
is appropriate for an application of the methodolo-
gies in this study to an applied problem and using
experts to select the appropriate weights, here
weighting would only serve to add an additional
level of complexity to the comprehension of the
problem and the proposed solutions. In addition,
since the research in this study is not applied to
a particular, unique disassembly situation but
rather to the DLBP in general, the assignment of
weighting values would be completely arbitrary
and hence add little if any value to the final analysis
of any results. Finally, the use of weights may not
adequately reflect the generalized performance
of the combinatorial optimization methods being

studied; nuances in the methods, the data, and
the weights themselves may generate atypical,
unforeseen, or non-repeatable results. For these
reasons, a simplified process was developed to
select the best solution. Based on the priorities
listed, the balance is the primary objective used
to search for an optimal solution (note the use
of “less than” and “less than or equal to” signs
in Figure 2 indicating the desire for the better
solution to be on the left side of the inequality
since we are seeking to minimize all measures).
Given multiple optimum extreme points in F,
early removal of hazardous parts is then consid-
ered. Given multiple optimum extreme points in
F and H, early removal of high-demand parts is
considered next. Finally, given multiple optimum
extreme points in F, H, and D, adjacent removal
of parts with equivalent part removal directions is
considered. This process is shown in pseudo-code
format in Figure 2 where the most recent solution

Procedure BETTER_SOLUTION (new_solution, best_solution) {
IF (new_solution.F < best_solution.F

∨
 (new_solution.F ≤ best_solution.F ∧
 new_solution.H < best_solution.H)
 ∨
 (new_solution.F ≤ best_solution.F ∧
 new_solution.H ≤ best_solution.H ∧
 new_solution.D < best_solution.D)
 ∨
 (new_solution.F ≤ best_solution.F ∧
 new_solution.H ≤ best_solution.H ∧
 new_solution.D ≤ best_solution.D∧
 new_solution.R < best_solution.R)){
 RETURN (TRUE)
 }
 RETURN (FALSE)
}

Figure 2. Multicriteria selection procedure

 159

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

generated is given by new_solution while the best
solution visited thus far in the search is given by
best_solution with .F, .H, .D, and .R indicating
the respective solution’s numerical measures from
formulae (2), (9), (16), and (20).

This process has its basis in two MCDM
techniques:

The feasible region in an LP problem (and in
DLBP) is usually a multidimensional subset of
Rz containing an infinite (finite in DLBP due to
its integer nature) number of points. Because it
is formed by the intersection of a finite number
of closed half-spaces (defined by ≤ and ≥, that
is, the inequality constraints) and hyperplanes
(equality constraints) it is polyhedral. Thus, the
feasible region is closed and convex with a finite
number of extreme points. The Simplex method
(Hillier & Lieberman, 2005) for solving LPs
exploits the polyhedral properties in the sense
that the optimal solutions can be found without
having to examine all of the points in the feasible
region. Taking the steepest gradient following
each point examined accomplishes this. Con-
ventional LP algorithms and software terminate
their search once the first optimal extreme point is
found (in our example, once the first F* is found).
They fail to identify alternative optima if they
exist. In general, an LP instance may have one
or more optimal extreme points and one or more
unbounded edge(s) (though the latter would not
be expected of DLBP since it should be contained
within the convex hull of a polytope, that is, a
finite region of n-dimensional space enclosed by
a finite number of hyperplanes). The optimal set
is the convex combination (i.e., the set of all the
points) of all optimal extreme points and points
on unbounded edges. It is therefore desired to test
all optimal extreme points. This can be done by
pivoting and is performed using what is known
as a Phase III bookkeeping system. Determining
all alternative optima is enabled in a similar way
using the routine shown in Figure 2 (as long as the
combinatorial optimization technique in question
is able to visit those extreme points).

A second MCDM technique that the process
in Figure 2 borrows from is preemptive (lexico-
graphic) goal programming (GP). GP was initially
conceived by Charnes, Cooper, and Ferguson
(1955) and Charnes and Cooper (1961) and
conceptualizes objectives as goals then assigns
priorities to the achievement of these goals. In
preemptive GP, goals are grouped according to
priorities. The goals at the highest priority level
are considered to be infinitely more important than
goals at the second priority level, and the goals
at the second priority level are considered to be
infinitely more important than goals at the third
priority level, and so forth (note that a search can
effectively terminate using GP if a high priority
goal has a unique solution; as a result, lower order
goals would not have the opportunity to influence
the GP-generated solution). This process can be
readily seen in Figure 2 where “infinitely more
important” is enforced using the “less than or
equal to” (≤) symbol.

This chapter makes use of the term “optimal”
to describe the best solution. It should be noted
that in the field of MCDM this term is changed to
“efficient” (also, noninferior, nondominated, or
Pareto-optimum) where there is no unique solu-
tion that maximizes all objectives simultaneously.
With this understanding, “optimal” will continue
to be used to refer to the best answer possible for
a given instance and meeting the criteria set in
Figure 2.

Assessment Tools

While the disassembly line is the best choice for
automated disassembly of returned products, find-
ing the optimal balance for a disassembly line is
computationally intensive with exhaustive search
quickly becoming prohibitively large. Combina-
torial optimization techniques provide a general
algorithmic framework that can be applied to this
optimization problem. Although combinatorial
optimization holds promise in solving DLBP, one

160

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

of the concerns when using heuristics is the idea
that very little has been rigorously established in
reference to their performance; developing ways
of explaining and predicting their performance is
considered to be one of the most important chal-
lenges currently facing the fields of optimization
and algorithms (Papadimitriou & Steiglitz, 1998).
These challenges exist in the variety of evaluation
criteria available, a lack of data sets for testing
(disassembly-specific instances are addressed in
Section 5.5), and a lack of performance analysis
tools. In this section, mathematical and graphical
tools for quantitative and qualitative performance
analysis are developed and reviewed, focusing
on analytical methodologies used in evaluating
both of the combinatorial optimization searches
used here.

Graphical Analysis Tools

Charts and tables provide an intuitive view into
the workings and performance of solution-gener-
ating techniques. Both are used here to enhance
the qualitative understanding of a methodology’s
execution and status of its terminal state as well as
to allow for a comparison of relative performance
with instance size and when compared to other
methodologies.

The tables are used to observe the solution of
any single instance. The tables used here present
a solution in the following format: the sequence
n-tuple is listed in the first row, followed by
the corresponding part removal times, then the
workstation assignments, then the hazard values,
followed by the demand values, and finally the
direction values (note that the direction representa-
tion {+x, −x, +y, −y, +z, −z} is changed from {+1,
−1, +2, −2, +3, −3} as portrayed in the McGovern
and Gupta (2006b) formulae to {0, 1, 2, 3, 4, 5}
for purposes of software engineering). To improve
readability, the columns are shaded corresponding
to the workstation assignment using alternating
shades of gray. Use of this format (i.e., table) al-
lows for study of the final solution state as well as

potentially enabling improvements in algorithm
performance due to insights gained by this type
of observation.

The second graphical format used to allow for
qualitative study of techniques and their solutions
consists of a graphical comparison of known
best- and worst-case results with the results/aver-
aged results (deterministic techniques/stochastic
techniques; since methodologies with a probabi-
listic component—such as would be found with
evolutionary algorithms—can be expected to
generate different answers over multiple runs)
of a solution technique under consideration. The
charts are used to observe multiple, varying-size
solutions of the DLBP A Priori instances. Multiple
charts are used to display the various performance
measures, which are demonstrated here with the
DLBP A Priori benchmark data sets of sizes 8 ≤
n ≤ 80. The near-optimal solutions coupled with
the known optimal and nominal solutions for all
instance sizes under study provides a method,
not only for comparing the methodologies to the
best and worst cases, but to other methodologies
as well. Computational complexity is portrayed
using time complexity (analysis of the time re-
quired to solve a particular size instance of a given
problem) while space complexity (analysis of the
computer memory required to solve a particular
size instance of a given problem; Rosen, 1999) is
not considered. All time complexities are provided
in asymptotic notation (big-Oh, big-Omega, and
big-Theta) when commonly known or when cal-
culated where able. “Time complexity” typically
refers to worst-case runtimes, while in the numeri-
cal results portion of this chapter, the runtimes
provide a qualitative description of the studied
methodologies, so the experimentally determined
time complexities are presented with the under-
standing that the information is the average-case
time complexity of the particular software written
for the problem used with a specific instance. In
this chapter the charts used include: number of
workstations with optimal, balance measure with
optimal, normalized balance measure with opti-

 161

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

mal and nominal, hazard measure with optimal
and nominal, demand measure with optimal and
nominal, direction measure with optimal and
nominal, average-case time complexity with
third-order and exhaustive growth curves, and
average-case time complexity curves in detail.
Note that “number of workstations” and “idle
time” measures are analogous (e.g., one can be
calculated from the other) so only “number of
workstations” is calculated and displayed here.
Also, while “number of workstations” and “bal-
ance” are both calculated in various ways and
displayed in separate graphs, they are strongly
related as well. Both are presented to allow insight
into the search processes and further quantify
the efficacy of their solutions; however, it should
be noted that, for example, a solution optimal in
balance must also obviously be optimal in the
number of workstations.

Note that with the graphs depicting third-order
(i.e., O(n3)) and exhaustive (i.e., O(n!)) growth
curve graphics (as seen in Figure 14), the actual
average-case time complexity curve under consid-
eration is often not even readily visible. Even so,
average-case time complexity with the third-order
and exhaustive growth curves helps to show how
relatively fast all of these techniques are, while
the average-case time complexity graphics (Figure
15) defines the methodologies’ speed and rate of
growth in even more detail.

Though not demonstrated in this chapter, it is
often of value to make use of overlaid linear or
polynomial fitted regression lines to better pro-
vide graphical information for analysis of some
of these very fast heuristics. When a heuristic’s
software is configured to time down to 1/100th of
a second or slower, it should be recognized that
many applications of heuristics are able to run on
that order (or in some cases even faster); therefore,
average-case time complexity curves may give
the appearance of making dramatic steps up or
down when this is actually more of an aberration
of the order of the timing data that is collected.
For that reason, showing the average-case time

complexity with its regression line displays both
the actual data and more importantly, the shape
of the time growth in n.

In order to make the balance results comparable
in magnitude to all other measures and to allow for
more legible graphical comparisons with worst-
case calculations in the charts, the effects of squar-
ing portions of Formula (2) can be compensated for
by taking the square root of the resulting F, F*, or
Fnom. This will subsequently be referred to in this
study as normalizing (to reflect the concept of a
reduction in the values to a common magnitude).
While using Formula (2) is desirable to emphasize
the importance of a solution’s balance as well as
to drive stochastic search processes towards the
optimal solution, normalization allows for a more
intuitive observation of the relative merits of any
two solutions. For example, two solutions having
an equal number of workstations (e.g., NWS = 3)
but differing balance such as Ij = 〈1, 1, 4〉 and Ij
= 〈2, 2, 2〉 (optimal balance) would have balance
values of 18 and 12 respectively, while the nor-
malized values would stand at 4.24 and 3.46, still
indicating better balance with the latter solution,
but also giving a sense of the relative improve-
ment that solution provides, which the measure
generated by Formula (2) lacks.

Efficacy Index Equations

The primary mathematical tool developed for
quantitative analysis is shown in Formula (25).
This will subsequently be referred to as the ef-
ficacy index (McGovern & Gupta, 2006b). The
efficacy index EIx (where x is some metric under
consideration, e.g., F) is the ratio of the difference
between a calculated measure and its worst-case
measure to the measure’s sample range (i.e., the
difference between the best-case measure and
the worst-case measure as given by: max(Xy) −
min(Xz) | y, z ∈{1, 2,…, |X |} from the area of sta-
tistical quality control) expressed as a percentage
and described by

162

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

*

)(100
xx

xxEI
nom

nom
x −

−⋅
=

			
(25)

This generates a value between 0% and
100%, indicating the percentage of optimum for
any given measure and any given combinatorial
optimization methodology being evaluated. For
example, the efficacy index formula for balance
would read

*

)(100
FF

FFEI
nom

nom
F −

−⋅
=

	
where the subscript nom represents the worst-
case bound (nominal) for a given data set and
the superscript * represents the best-case bound
(optimal) for a given data set.

For the study of multiple data sets, probability
theory presents us with the concept of a sample
mean. The sample mean of a method’s efficacy
index can be calculated using

y
xx

xxEI
y

i nom

inom
x 








−
−⋅= ∑

=1
*

)(100

	
(26)

where y is the sample size (the number of data
sets). While Formula (25) provides individual
data set size efficacy indices—especially useful
in demonstrating worst and best case as well as
trends with instance size—Formula (26) allows
a single numerical value that provides a quanti-
tative measure of the location of the data center
in a sample.

Statistical Regression

Performed but not demonstrated in here, an ad-
ditional quantitative tool may be borrowed from
the field of statistics. Simple linear regression
and correlation (using the sample coefficient of

determination), and polynomial regression and
its associated coefficient of multiple determina-
tion can be used to quantify the accuracy of the
curves and to provide the regression equation. The
chart containing the combinatorial optimization
methodologies with the third-order and exhaus-
tive growth curves was used not only to provide a
qualitative, graphical comparison, but also (along
with the detailed time complexity curves) to deter-
mine the degree (order) of the fitted polynomial
regression curve. Once the order was observed
by comparison, either a linear or a polynomial
regression model was selected and the regression
equation was then automatically calculated by
mathematical software (using, for example, an
Excel 2000 spreadsheet software function), as
was the coefficient of determination. The heuristic
methodologies used here were either first (linear)
or second order. As part of the quantitative portion
of this research, this corresponds to average-case
time complexities of Ο(n) or Ο(n2).

Statistical Coefficient of
Determination

The coefficient of determination was the final
portion of the quantitative component of the
study. This value represents the portion of the
variation in the collected data explained by the
fitted curve. The coefficient of determination is
then multiplied by 100 to illustrate the adequacy
of the fitted regression model, indicating the per-
centage of variation time that can be attributed
to the size of the data set. The closer the value
comes to 100%, the more likely it is an accurate
model. While the coefficients of the polynomial
regression model are of interest in presenting as
accurate a growth curve model as possible, of
greater value in this study is the order of the model
since the largest exponent is the only variable of
interest in complexity theory.

 163

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Performance Assessment
Experimental Benchmark Data Set

Any solution methodology needs to be applied to
a collection of test cases to demonstrate its perfor-
mance as well as its limitations. Benchmark data
sets are common for many NP-complete problems,
such as Oliver30 and RY48P for application to the
Traveling Salesman Problem and Nugent15/20/30,
Elshafei19, and Krarup30 for the Quadratic As-
signment Problem. Unfortunately, because of
their size and their design, most of these existing
data sets have no known optimal answer and new
solutions are not compared to the optimal solution,
but rather the best solution to date. In addition,
since DLBP is a recently defined problem, no
appropriate benchmark data sets exist.

This size-independent a priori benchmark
data set was generated (McGovern & Gupta,
2004) based on the following. Since, in general,
solutions to larger and larger instances cannot be
verified as optimal (due to the time complexity of
exhaustive search), it is proposed that instances
be generated in such a way as to always provide
a known solution. This was done by using part
removal times consisting exclusively of prime
numbers further selected to ensure that no permu-
tations of these part removal times allowed for any
equal summations (in order to reduce the number
of possible optimal solutions). For example, part
removal times (PRTk, where k typically identifies
a part or sequence position) 1, 3, 5, and 7, and CT
= 16 would have minimum idle time solutions of
not only one 1, one 3, one 5, and one 7 at each
workstation, but various additional combinations
of these as well since 1 + 7 = 3 + 5 = ½ CT. Sub-
sequently, the chosen instances were made up of
parts with removal times of 3, 5, 7, and 11, and
CT = 26. As a result, the optimal balance for all
subsequent instances would consist of a perfect
balance of precedence-preserving permutations
of 3, 5, 7, and 11 at each workstation with idle
times of zero. (Note that the cardinality of the
set of part removal times |PRT| ≤ n since PRTk

is onto mapped to PRT, though not necessarily
one-to-one, since multiple parts may have equal
part removal times; that is, PRTk is a surjection
and may or may not be a bijection to PRT.)

As demonstrated in Table 1, to further compli-
cate the data (i.e., provide a large, feasible search
space), only one part was listed as hazardous and
this was one of the parts with the largest part
removal time (the last one listed in the original
data). In addition, one part (the last listed, sec-
ond largest part removal time component) was
listed as being demanded. This was done so that
only the hazardous and the demand sequencing
would be demonstrated while providing a slight
solution sequence disadvantage to any purely
greedy methodology (since two parts with part
removal times of 3 and 5 are needed along with
the parts with the larger part removal times to
reach the optimal balance F*, assigning hazard
and high-demand attributes to those parts with
smaller part removal times may prevent some
methodologies from artificially obtaining an F*
sequence). From each part removal time size, the
first listed part was selected to have a removal
direction differing from the other parts with the
same part removal time. This was done to dem-
onstrate direction selection while requiring any
solution-generating methodology to move these
first parts of each part removal time size encoun-
tered to the end of the sequence (i.e., into the last
workstation) in order to obtain the optimal part
direction value of R* = 1 (assuming the solution
technique being evaluated is able to successfully
place the hazardous and demanded parts towards
the front of the sequence).

Also, there were no precedence constraints
placed on the sequence, a deletion that further
challenges any method’s ability to attain an
optimal solution (by maximizing the feasible
search space). This has the added benefit of more
precisely modeling the restricted version of the
decision version (i.e., non-optimization) of DLBP
seen in McGovern and Gupta (2006a).

164

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Hazard values are given by





=
,0
,1

kh
otherwise

nk =

	

(27)

with demand values given by





=
,0
,1

kd
otherwise

PRT
PRTnk

||
)1|(| −⋅

=

	
						

(28)

and part removal direction values given by





=
,0
,1

kr
otherwise

PRT
nPRT

PRT
n

PRT
nk 1

||
)1|(|,...,1

||
2,1

||
,1 +

⋅−
++=





=
,0
,1

kr
otherwise

PRT
nPRT

PRT
n

PRT
nk 1

||
)1|(|,...,1

||
2,1

||
,1 +

⋅−
++=

	

						 (29)

Since |PRT| = 4 in this chapter, each part
removal time is generated by
















≤<

≤<

≤<

≤<

=

nkn

nkn

nkn

nk

PRT k

4
3,11

4
3

2
,7

24
,5

4
0,3

	

(30)

Known optimal results include balance
measure F* = 0, hazardous part measure H* = 1,
demanded part measure D* = 2, and part removal
direction measure R* = 1.

A data set containing parts with equal part
removal times and no precedence constraints
will result in multiple optimum extreme points.
Using probability theory (counting sample points
using the generalized multiplication rule cover-
ing n operations), it can be seen in Table 2 (and
detailed in McGovern & Gupta, 2004) that the
number of solutions optimal in all objectives goes
from less than 8.3% of n at n = 4, to 0.12% at n
= 8, dropping to effectively 0% at n = 16; as n
grows, the percentage of optimal solutions gets
closer and closer to zero.

The final configuration of the benchmark as
used here was 19 instances with instance size
distributed from n = 8 to n = 80 in steps of |PRT|
= 4. The size and range of the instances is con-
sidered appropriate, with small ns tested—which
decreases the NWS value and tends to exaggerate
less than optimal performance—as well as large,
which demonstrates time complexity growth and
efficacy changes with n.

H-K Heuristic

Heuristic Search Background

Exhaustive search techniques (e.g., pure depth-first
or pure breadth-first) will fail to find a solution to
any but the smallest instances within any practical
length of time. Blind search, weak search, naïve

Table 1. DLBP A Priori data for n = 12

Part ID 1 2 3 4 5 6 7 8 9 10 11 12
PRT 3 3 3 5 5 5 7 7 7 11 11 11
Hazardous 0 0 0 0 0 0 0 0 0 0 0 1
Demand 0 0 0 0 0 0 0 0 1 0 0 0
Direction 1 0 0 1 0 0 1 0 0 1 0 0

 165

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

search, and uninformed search are all terms used
to refer to algorithms that use the simplest, most in-
tuitive method of searching through a search space,
whereas informed search algorithms use heuristics
to apply knowledge about the structure of the
search space. An uninformed search algorithm
is one that does not take into account the specific
nature of the problem. This allows uninformed
searches to be implemented in general, with the
same implementation able to be used in a wide
range of problems. Uninformed searches include
exhaustive search and H-K. H-K seeks to take
advantage of the benefits of uninformed search
while addressing the exhaustive search drawbacks
of runtime growth with instance size.

Heuristic Motivation and
Introduction

Exhaustive search is optimal because it looks at
every possible answer. While an optimal solution
can be found, this technique is impractical for
all but the simplest combinatorial problems due
to the explosive growth in search time. In many
physical search applications (e.g., antisubmarine
warfare, search and rescue) exhaustive search is
not possible due to time or sensor limitations. In
these cases, it becomes practical to sample the
search space and operate under the assumption
that, for example, the highest point of land found
during the conduct of a limited search is either

is the highest point in a given search area or is
reasonably near the highest point. The proposed
search technique (McGovern & Gupta, 2004) in
this chapter works by sampling the exhaustive
solution set; that is, search the solution space in
a method similar to an exhaustive search but in
a pattern that skips solutions (conceptually simi-
lar to the STEP functionality in a FOR loop as
found in computer programming) to significantly
minimize the search space (Figure 3; the shading
indicates solutions visited, the border represents
the search space).

This pattern is analogous to the radar acqui-
sition search pattern known as “spiral scan,”
the search and rescue pattern of the “expanding
square,” or the antisubmarine warfare aircraft
“magnetic anomaly detector (MAD) hunting
circle.” Once the solution is generated, the space
can be further searched with additional applica-
tions of the H-K heuristic (with modifications from
the previous H-K) or the best-to-date solution can
be further refined by performing subsequent local
searches (such as 2-opt or smaller, localized H-
K searches). Depending on the application, H-K
can be run once, multiple times on subsequent
solutions, multiple times from the same starting
point using different skip measure (potentially
as a multiprocessor application using parallel
algorithms or as a grid computing application),
multiple times from a different starting point us-
ing the same skip measure (again, potentially as a

Table 2. Comparison of possible solutions to optimal solutions for a given n using the DLBP A Priori
data

n n! Number optimal in
balance

Number optimal
in all

Percentage optimal in
balance

P e r c e n t a g e
optimal in all

4 24 24 2 100.00% 8.33%
8 40,320 9,216 48 22.86% 0.12%
12 479,001,600 17,915,904 10,368 3.74% 0.00%
16 2.09228E+13 1.10075E+11 7,077,888 0.53% 0.00%

166

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

multiprocessor or grid computing application), or
followed up with an H-K or another, differing local
search on the best or several of the best suboptimal
solutions generated. While termination normally
takes place after all sequences are generated for a
given skip size, termination can also be effected
based on time elapsed or once finding a solution
that is within a predetermined bound. H-K can also
be used as the first phase of a hybrid algorithm or
to hot start another methodology (e.g., to provide
the initial population in a GA). One interesting
use for H-K is application to the unusual problem
where quantifying a small improvement (i.e., a
greedy decision, such as would be found in ant
colony optimization where the ant agents build
a solution incrementally and, therefore, need to
know which of the available solution elements
reflects an improvement) is not possible or is not
understood, or where the incremental greedy
improvements may not lead to a global optima.
Finally, H-K would also be useful in quickly
gathering a sampling of the solution space to
allow for a statistical or other study of the data
(e.g., H-K could enable the determination of the
approximate worst-case and best-case solutions
as well as solution efficacy indices mean, median,
and mode).

The skip size ψ, or more generally ψk (the kth
element’s skip measure; i.e., for the solution’s third
element, visit every 2nd possible task for ψ3 = 2)

can be as small as ψ = 1 or as large as ψ = n. Since
ψ = 1 is equivalent to exhaustive search and ψ =
n generates a trivial solution (it returns only one
solution, that being the data in the same sequence
as it is given to H-K, that is, PSk = 〈1, 2, 3, … ,
n〉; also, in the single-phase H-K this solution is
already considered by any value of ψ), in general
all skip values can be further constrained as

12 −≤≤ nk 				 (31)

Depending on structural decisions, H-K can
take on a variety of forms, from a classical op-
timization algorithm in its most basic form, to a
general evolutionary algorithm with the use of
multiple H-K processes, to a biological or natural
process algorithm by electing random functional-
ity. In order to demonstrate the method and show
some of its limitations, in this chapter the most
basic form of the H-K heuristic is used: one pro-
cess (though visiting the data twice, in forward
and in reverse order), constant starting point of
PSk = 〈1, 1, 1,…, 1〉 (since the solution set is a per-
mutation, there are no repeated items; therefore,
the starting point is effectively PSk = 〈1, 2, 3,…,
n〉), constant skip type (i.e., each element in the
solution sequence is skipped in the same way),
constant maximum skip size (although different
skip sizes are used throughout each H-K run, and
no follow-on solution refinement.

Figure 3. Exhaustive search space and the H-K search space and methodology

 167

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

The H-K Process and DLBP
Application

As far as the H-K process itself, since it is a
modified exhaustive search allowing for solu-
tion sampling, it searches for solutions similar
to depth-first search iteratively seeking the next
permutation iteration—allowing for skips in the
sequence—in lexicographic order. In the basic
H-K and with ψ = 2, the first element in the first
solution would be 1, the next element considered
would be 1, but since it is already in the solution,
that element would be incremented and 2 would
be considered and be acceptable. This is repeated
for all of the elements until the first solution is
generated. In the next iteration, the initial part
under consideration would be incremented by 2
and, therefore, 3 would be considered and inserted
as the first element. Since 1 is not yet in the se-
quence, it would be placed in the second position,
2 in the third, and so forth. For DLBP H-K this
is further modified to test the proposed sequence
part addition for precedence constraints. If all
possible parts for a given solution position fail
these checks, the remainder of the positions are
not further inspected, the procedure falls back to
the previously successful solution addition, incre-
ments it by 1, and continues. These processes are
repeated until all allowed items have been visited
in the first solution position (and by default, due
to the nested nature of the search, all subsequent
solution positions). For example, with n = 4, P =
{1, 2, 3, 4}, and no precedence constraints, instead
of considering the 4! = 24 possible permutations,
only five are considered by the single-phase H-K
with ψ = 2 and using forward-only data: PSk =
〈1, 2, 3, 4〉, PSk = 〈1, 4, 2, 3〉, PSk = 〈3, 1, 2, 4〉, PSk
= 〈3, 1, 4, 2〉, and PSk = 〈3, 4, 1, 2〉. With n = 5, P
= {1, 2, 3, 4, 5}, and no precedence constraints,
instead of considering the 5! = 120 possible per-
mutations, only 16 are considered by the single-
phase H-K with ψ = 2 and using forward-only
data as demonstrated in Figure 4.

All of the parts are maintained in a tabu-type
list. Each iteration of the DLBP H-K generated
solution is considered for feasibility. If it is ulti-
mately feasible in its entirety, DLBP H-K then
looks at each element in the solution and places
that element using the Next-Fit (NF) rule (from
the Bin-Packing problem application; once a bin
has no space for a given item attempted to be
packed into it, that bin is never used again even
though a later, smaller item may appear in the list
and could fit in the bin (see Hu & Shing, 2002).
DLBP H-K puts the element under consideration
into the current workstation if it fits. If it does not
fit, a new workstation is assigned and previous
workstations are never again considered. Although
NF does not perform as well as First-Fit, Best-
Fit, First-Fit-Decreasing, or Best-Fit-Decreasing
when used in the general Bin-Packing problem, it
is the only one of these rules that will work with

PSk = 〈1, 2, 3, 4, 5〉
PSk = 〈1, 2, 5, 3, 4〉
PSk = 〈1, 4, 2, 3, 5〉
PSk = 〈1, 4, 5, 2, 3〉
PSk = 〈1, 4, 5, 3, 2〉
PSk = 〈3, 1, 2, 4, 5〉
PSk = 〈3, 1, 4, 2, 5〉
PSk = 〈3, 1, 4, 5, 2〉
PSk = 〈3, 4, 1, 2, 5〉
PSk = 〈3, 4, 1, 5, 2〉
PSk = 〈3, 4, 5, 1, 2〉
PSk = 〈5, 1, 2, 3, 4〉
PSk = 〈5, 1, 4, 2, 3〉
PSk = 〈5, 3, 1, 2, 4〉
PSk = 〈5, 3, 1, 4, 2〉
PSk = 〈5, 3, 4, 1, 2〉

Figure 4. DLBP H-K results at n = 5 and ψ = 2

168

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

a DLBP solution sequence due to the existence
of precedence constraints (see McGovern &
Gupta, 2005 for a DLBP implementation of First-
Fit-Decreasing). When all of the work elements
have been assigned to a workstation, the process

is complete and the balance, hazard, demand and
direction measures are calculated. The best of all
of the inspected solution sequences is then saved
as the problem solution. Although the actual soft-
ware implementation for this study consisted of a

Procedure DLBP_H-K {
SET ISSk := 0 ∀ k∈P
SET FS := 1

PS1 := 1 to n, skip by 1
 SET ISSPS1 := 1

PS2 := 1 to n, skip by 2
WHILE (ISSPS2 = = 1 ∨

 PRECEDENCE_FAIL ∧
 not at n)

 Increment PS2 by 1

IF ISSPS2 = = 1
THEN SET FS := 0

 ELSE SET ISSPS2 := 1
 :
 :
 IF FS = = 1

PSn := 1 to n skip by n
WHILE (ISSPSn = =1 ∨

 PRECEDENCE_FAIL ∧
 not at n)

 Increment PSn by 1

IF ISSPSn = = 0
THEN evaluate solution PS

 :
 :

 IF FS = = 1
THEN SET ISSPS2 := 0

 ELSE SET FS := 1

SET ISSPS1 := 0
SET FS := 1

}

Figure 5. The DLBP H-K procedure

 169

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

very compact recursive algorithm, in the interest
of clarity, the general DLBP H-K procedure is
presented here as a series of nested loops (Figure
5, where ISSk is the binary flag representing the
tabu-type list; set to 1 if part k is in the solution
sequence, and FS is the feasible sequence binary
flag; set to 1 if the sequence is feasible).

Skip size affects various measures including
the efficacy indices and time complexity. The
general form of the skip-size to problem-size
relationship is formulated as

kk n ∆−= 				 (32)

where ∆ψ represents the kth element’s delta skip
measure; difference between problem size n and
skip size ψk (i.e., for ∆ψ = 10 and n = 80, ψ =
70).

Early tests of time complexity growth with
skip size suggest another technique to be used
as part of H-K search. Since any values of ψ that
are larger than the chosen skip value for a given
H-K instance were seen to take significantly less
processing time, considering all larger skip values
should also be considered in order to increase the
search space at the expense of a minimal increase
in search time. In other words, H-K can be run
repeatedly on a given instance using all skip
values from a smallest ψ (selected based upon
time complexity considerations) to the largest
(i.e., n – 1 per Formula (31)) without a signifi-
cant time penalty. In this case, any ψk would be
constrained as

1−≤≤∆− nn kk where 21 −≤∆≤ nk 	

1−≤≤∆− nn kk where 21 −≤∆≤ nk 		 (33)

If this technique is used (as it is here), it should
also be noted that multiples of ψ visit the same
solutions; for example, for n = 12 and 2 ≤ ψ ≤ 10,
the four solutions considered by ψ = 10 are also
visited by ψ = 2 and ψ = 5.

In terms of time complexity, the rate of growth
has been observed to be exponential in the in-
verse of ψ. The average-case time complexity of
H-K is then listed as Ο(bb) in skip size, where b
= 1/ψ. Due to the nature of H-K, the number of
commands executed in the software do not vary
based on precedence constraints, data sequence,
greedy or probabilistic decision making, improved
solutions nearby, and so forth, so the worst case
is also Ο(bb), as is the best case (big-Omega of
Ω(bb)), and, therefore, a tight bound exists, which
is Θ(bb). As used in the Numerical Comparison
section below (forward and reverse data, 1 ≤ ∆ψ
≤ 10, and resulting skip sizes of n − 10 ≤ ψ ≤ n
− 1), the average-case time complexity of DLBP
H-K curve is listed as Ο(n2) or polynomial com-
plexity. The deterministic, single iteration nature
of H-K also indicates that the process would be
no faster than this, so it is expected that the time
complexity lower bound is Ω(n2) and, therefore,
the H-K appears to have an asymptotically tight
bound of Θ(n2) as configured here.

Genetic Algorithm

GA Model Description

A genetic algorithm (a parallel neighborhood,
stochastic-directed search technique) provides
an environment where solutions continuously
crossbreed, mutate, and compete with each other
until they evolve into an optimal or near-optimal
solution (Holland, 1975). Due to its structure and
search method, a GA is often able to find a global
solution, unlike many other heuristics that use hill
climbing to find a best solution nearby resulting
only in a local optima. In addition, a GA does
not need specific details about a problem nor is
the problem’s structure relevant; a function can
be linear, nonlinear, stochastic, combinatorial,
noisy and so forth.

GA has a solution structure defined as a
chromosome, which is made up of genes and

170

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

generated by two parent chromosomes from the
pool of solutions, each having its own measure
of fitness. New solutions are generated from old
using the techniques of crossover (sever parents
genes and swap severed sections) Rx and mutation
(randomly vary genes within a chromosome) Rm.
Typically, the main challenge with any genetic
algorithm implementation is determining a chro-
mosome representation that remains valid after
each generation.

For DLBP the chromosome (solution) con-
sisted of a sequence of genes (parts). A pool, or
population, of size N was used. Only feasible
disassembly sequences were allowed as members
of the population or as offspring. The fitness was
computed for each chromosome using the method
for solution performance determination (i.e., in
lexicographic order using F, H, D, then R).

The time complexity is a function of the num-
ber of generations, the population size N, and the
chromosome size n. As such, the runtime is seen
to be on the order of n⋅N⋅(number of generations).
Since both the population and the number of
generations are considered to stay constant with
instance size, the best-case time complexity of
GA is seen to have an asymptotic lower bound of
Ω(n). Because the worst-case runtime also requires
no more processing time than T(n) ∝ n⋅N⋅(number
of generations), the worst-case time complexity
of GA has the asymptotic upper bound Ο(n), so
GA therefore exhibits a tight time complexity
bound of Θ(n).

DLBP-Specific Genetic Algorithm
Architecture

The GA for DLBP was constructed as follows
(McGovern & Gupta, 2007). An initial, feasible
population was randomly generated and the fit-
ness of each chromosome in this generation was
calculated. An even integer of Rx⋅N parents was
randomly selected for crossover to produce Rx⋅N
offspring (offspring make up (Rx⋅N⋅100)% of each
generation’s population). (Note that often GA’s

use fitness values rather than random selection for
crossover; the authors found that random selection
made creation of children that were duplicates of
each other or of parents less likely and allowed for
a more diverse population.) An elegant crossover,
the precedence preservative crossover (PPX)
developed by Bierwirth, Mattfeld, and Kopfer
(1996) was used to create the offspring. As shown
in Figure 6, PPX first creates a mask (one for each
child, every generation). The mask consists of
random 1s and 2s indicating which parent part
information should be taken from. If, for example,
the mask for child 1 reads 22121112, the first two
parts (i.e., from left to right) in parent 2 would
make up the first two genes of child 1 (and these
parts would be stricken from the parts available to
take from both parent 1 and 2); the first available
(i.e., not stricken) part in parent 1 would make
up gene three of child 1; the next available part
in parent 2 would make up gene four of child 1;
the next three available parts in parent 1 would
make up genes five, six, and seven of child 1; the
last part in parent 2 would make up gene eight of
child 1. This technique is repeated using a new
mask for child 2.

After crossover, mutation is randomly con-
ducted. Mutation was occasionally (based on
the Rm value) performed by randomly selecting a
single child then exchanging two of its disassembly
tasks while ensuring precedence is preserved.
The Rx⋅N least-fit parents are removed by sorting
the entire parent population from worst-to-best
based on fitness.

Since the GA saves the best parents from
generation to generation and it is possible for
duplicates of a solution to be formed using PPX,
the solution set could contain multiple copies
of the same answer resulting in the algorithm
potentially becoming trapped in a local optima.
This becomes more likely in a GA with solution
constraints (such as precedence requirements)
and small populations, both of which are seen
in the study in this chapter. To avoid this, DLBP
GA was modified to treat duplicate solutions as

 171

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

if they had the worst fitness performance (highest
numerical value), relegating them to replacement
in the next generation. With this new ordering,
the best unique (1 – Rx)⋅N parents were kept along
with all of the Rx⋅N offspring to make up the next
generation then the process was repeated.

DLBP-Specific GA Qualitative
Modifications

DLBP GA was modified from a general GA in
several ways (Figure 7). Instead of the worst por-
tion of the population being selected for crossover
as is often the case in GA, in DLBP GA all of
the population was (randomly) considered for
crossover. This better enables the selection of
nearby solutions (i.e., solutions similar to the best
solutions to-date) common in many scheduling
problems. Also, mutation was performed only on
the children in DLBP GA, not the worst parents
as is typical in a general GA. This was done to
address the small population used in DLBP GA

and to counter PPX’s tendency to duplicate parents.
Finally, duplicate children are sorted in DLBP
GA to make their deletion from the population
likely since there is a tendency for the creation
of duplicate solutions (due to PPX) and due to
the small population saved from generation to
generation.

DLBP-Specific GA Quantitative
Modifications

While the matter of population sizing is a contro-
versial research area in evolutionary computing,
here a small population was used (20) to minimize
data storage requirements and simplify analysis
while a large number of generations were used
(10,000) to compensate for this small population
while not being so large as to take an excessive
amount of processing time. This was also done
to avoid solving all cases to optimality since it
was desirable to determine the point at which
the DLBP GA performance begins to break

Figure 6. PPX example

172

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

down and how that breakdown manifests itself.
A 60% crossover was selected based on test and
analysis. Developmental testing indicated that a
60% crossover provided better solutions and did
so with one-third less processing time than, for

example 90%. Previous assembly line balancing
literature that indicated best results have typically
been found with crossover rates of from 0.5 to
0.7 also substantiated the selection of this lower
crossover rate. A mutation was performed about

Figure 7. The DLBP GA procedure

Procedure DLBP_GA {
 INITIALIZE_DATA {Load data: part removal times, etc.}

SET count := 1 {count is the generation counter}

 FOR N DO: {Randomly create an initial population}

DO:
 RANDOMLY_CREATE_CHROMOSOME
 WHILE (PRECEDENCE_FAIL)
 CALC_FITNESS {Establish the initial solution’s fitness}

 SET num_parents := N * Rx {Determine number of parents for reproduction}
 {Ensure an even number of parents}

SET num_parents := 2 * (num_parents / 2)
{Note: num_parents is typed as an integer}

DO: {Run GA for MAX_GENERATIONS}
 RANDOMIZE_PARENTS {Randomly order the parents for breeding}

 FOR num_parents DO: {Perform crossover using PPX}
 CROSSOVER

 IF FLIP(Rm) DO: {FLIP equals 1 Rm % of the time, else 0}

MUTATE_CHILD {Randomly select and mutate a child}

 REMOVE_LEAST_FIT {Sort: best parents to the last positions}
 REMOVE_REPEATS {Duplicate answers to the front and resort}

CHILDREN_TO_POOL {Add children to the population}

 FOR N DO:

CALC_FITNESS {Calculate each solution’s fitness}

 count := count + 1 {Next generation}
 WHILE (count < MAX_GENERATIONS)

SAVE the last chromosome as the best_solution
}

 173

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

one percent of the time. Although some texts
recommend 0.01% mutation while applications
in journal papers have used as much as 100%
mutation, it was found that 1.0% gave excellent
algorithm performance for the Disassembly Line
Balancing Problem.

Numerical Comparison and
Qualitative Analysis

The evolutionary algorithm and the uninformed
heuristic were run on the DLBP A Priori experi-
mental instances (with size varying between 8 ≤
n ≤ 80) with the results comparatively analyzed
in this section. For H-K, all cases were calculated
using a varying delta skip of 1 ≤ ∆ψ ≤ 10 with
the resulting skip sizes of n − 10 ≤ ψ ≤ n − 1; the
software was set up so that it would not attempt
any skip size smaller than ψ = 3 (to avoid ex-
haustive or near-exhaustive searches with small
instances). In addition, the DLBP A Priori data
sets were run with the data in forward and reverse
for H-K. For GA, all tests were performed using
a population size of 20, mutation rates of 1.0%,
10,000 generations, and crossover rates of 60%.
Note that, due to the averaging of the results given
by the process with stochastic characteristics
(DLBP GA), many of the reported results are not
purely discrete.

Table-Based Qualitative
Assessment

From Section 5.1, the table-based qualitative
analysis tool is demonstrated. The DLBP H-K
technique can be seen below (Table 3) on the
DLBP A Priori data presented forward and re-
verse at n = 12 and 3 ≤ ψ ≤ 11 (note that without
the minimum allowed value of ψ = 3, skip values
would include 2 ≤ ψ ≤ 11). DLBP H-K was able to
find a solution optimal in the number of worksta-
tions, balance, and hazard (though not demand
or direction). The solution found came from the
reverse set and consisted of NWS* = 3, F* = 0, H*
= 1, D = 10 (optimal value is D* = 2), and R = 2
(optimal value is R* = 1).

An example of a GA metaheuristic solution
can be seen below with n = 12 (Table 4). While
there is more than one optimal solution for the
A Priori instances, GA was able to regularly
find one of the multiple optimum extreme points
(three workstations and F* = 0, H* = 1, D* = 2,
and R* = 1).

Graph-Based Qualitative
Assessment and Quantitative
Analysis Using Efficacy Indices and
Regression

Next, a qualitative comparison was performed us-
ing the graph-based format. Quantitative analysis

Table 3. H-K solution using the A Priori instance at n = 12 and 3 ≤ ψ ≤ 11 (data presented in forward
and reverse order)

Part ID 12 2 5 8 11 1 4 7 10 9 6 3
PRT 11 3 5 7 11 3 5 7 11 7 5 3
Workstation 1 1 1 1 2 2 2 2 3 3 3 3
Hazardous 1 0 0 0 0 0 0 0 0 0 0 0
Demand 0 0 0 0 0 0 0 0 0 1 0 0
Direction 0 0 0 0 0 1 1 1 1 0 0 0

174

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

was enabled first by calculating the efficacy indices
and then through the experimental determination
of average-case time complexity using linear or
polynomial regression. Note that the curves also
appear to rather sharp increases and decreases.
This is due to a combination of discrete values
being connected by straight lines (i.e., with no
smoothing) and due to the scale of those param-
eters’ charts, rather than being indicative of any
data anomalies.

The first study performed was a measure of
each of the technique’s calculated number of work-
stations as compared to the optimal. As shown
in Figure 8, both of the methods performed very
well in workstation calculation, staying within
2 workstations of optimum for all data set sizes
tested. On the full range of data (8 ≤ n ≤ 80),
DLBP H-K found solutions with NWS* worksta-
tions up to n = 12, then solutions with NWS* + 1
workstations through data set 11 (n = 48), after
which it stabilized at NWS* + 2. From Formula (25)
H-K’s efficacy index in number of workstations
started at an optimal EINWS = 100%, dropped to
a low of EINWS = 92%, then continuously climbed
through to EINWS = 97% with an efficacy index
sample mean in number of workstations of NWSEI
= 96%. DLBP GA’s efficacy index in number of
workstations went from a high of 100%, down
to 94% then stabilized between 97% and 98%.
Overall, as given by Formula (26), DLBP GA

shows an efficacy index sample mean in number
of workstations of 97%.

In terms of the calculated measure of balance,
again, both of the methods are seen to perform
very well and significantly better than the worst
case (as given by formula (7)). Best case is found
uniformly at F = 0, as illustrated by Figure 9.
However, examining the balance in greater
detail provides some insight into the different
techniques.

DLBP H-K and GA tend to decrease similarly
and in a step function fashion (note, however,
that even their normalized balance performance
actually improves overall with instance size as
a percentage of worst case as indicated by their
improved efficacy indices with instance size; see
Figure 10). This is to be expected; for H-K this has
to do with the fact that as the instance size grows,
a lower and lower percentage of the search space
is investigated (assuming the skip size range is not
allowed to increase with instance size, which is
the case in this chapter). For GA, efficacy falls off
with instance size because (unlike, for example,
many hill-climbing and r-optimal processes that
continue to search until no better nearby solution
can be found) GA is set up to terminate after a
fixed number of generations (in addition, GA’s
population does not increase with increases in
instance size).

While increases in H-K’s balance measure are
seen with increases in data set size, as a percentage

Table 4. Typical GA solution using the A Priori instance at n = 12

Part ID 12 9 5 3 8 11 6 2 4 10 7 1
PRT 11 7 5 3 7 11 5 3 5 11 7 3
Workstation 1 1 1 1 2 2 2 2 3 3 3 3
Hazardous 1 0 0 0 0 0 0 0 0 0 0 0
Demand 0 1 0 0 0 0 0 0 0 0 0 0
Direction 0 0 0 0 0 0 0 0 1 1 1 1

 175

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

•

•

••

••

• •

• •

• •• •• •

n

N
um

be
r o

f W
or

ks
ta

tio
ns

Optimal

GA

H-K

Figure 8. Workstation calculations for each DLBP combinatorial optimization method

Figure 9. Detailed DLBP combinatorial optimization methods’ balance performance

0

50

100

150

200

250

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

B
al

an
ce

Optimal

GA

H-K

176

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

of the overall range from best case to worst case,
the normalized balance measure tends to decrease
(i.e., improve) with increases in the data set size.
The normalized balance efficacy index dropped
from a high of EIF = 100% to a low of EIF = 85%
at data set 3 (n = 16) then slowly climbed to EIF =
92% giving a sample mean of FEI = 92%. With
DLBP GA, the normalized balance efficacy index
started as high as 100% then dropped to 93%
to 95%; it was never lower than 89% and had a
sample mean of 94%. An instance size of n = 16
was seen to be the point at which the optimally
balanced solution was not consistently found for
the selected N and number of generations. Al-
though DLBP GA’s performance decreased with
instance size, it can be seen in Figure 10 that the
solution found, while not optimal, was very near
optimal and when normalized, roughly paralleled
the optimal balance curve.

The hazard measure results are as expected
since hazard performance is designed to be defer-
ential to balance and affected only when a better
hazard measure can be attained without adversely
affecting balance. The hazard measure tends to get
worse with problem size using DLBP GA, with
its efficacy index dropping relatively constantly
from 100% to 60% and having a sample mean of

HEI = 84%. The hazardous part was regularly
suboptimally placed by DLBP H-K as well. Haz-
ardous-part placement stayed relatively consistent
with problem size (though effectively improving
as compared to the worst case, as illustrated by
Figure 11). The hazard measure’s efficacy index
fluctuates, similarly to a sawtooth wave function,
between EIH = 57% and EIH = 100%, giving a
sample mean of HEI = 90%.

With DLBP GA, the demand measure gets
worse at a slightly more rapid rate than the haz-

Figure 10. Normalized DLBP combinatorial optimization methods’ balance performance

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

B
al

an
ce

 (o
pt

im
al

 a
t 0

)

GA
H-K
Worst Case

 177

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

ardous-part measure—as is expected due to the
multicriteria priorities—with its efficacy index
dropping from 100% to 45% (with a low of 42%)
and having a sample mean of DEI = 78% (Figure
12). DLBP H-K also suboptimally placed the
high-demand part, and also at a higher rate than
the hazardous part. Its efficacy index fluctuates
between EID = 7% and EID = 103% (due to better
than optimal placement in position k = 1 at the ex-
pense of hazard placement). Its resulting demand
measure sample mean is DEI = 49%.

With part removal direction structured as to
be deferential to balance, hazard, and demand,
the two methodologies were seen to decrease in
performance in a haphazard fashion. This decrease
in performance is seen both when compared to the
best case and when compared to the worst case
(Figure 13). Again, these results are as expected
due the prioritization of the multiple objectives.

Though the part removal direction efficacy gets
as high as EIR = 86% with the H-K implementa-
tion, by data set 5 (n = 24) it has dropped to EIR =
0% and never rises higher again than EIR = 43%,
resulting in a sample mean of REI = 20%. Us-
ing the GA, the part removal direction measure
gets worse at a more rapid rate than the demand
measure, again attributed to the multicriteria
priorities, with its efficacy index dropping as low
as 17% (at data set 15 where n = 64) and having
a sample mean of REI = 49%.

Finally, time complexity was examined using
the A Priori data. Both of the techniques were
seen to be very fast (Figure 14) and each is seen
to be faster than third order.

Using DLBP GA, runtime increased very
slowly with instance size. A linear model was used
to fit the curve with the linear regression equation
calculated to be T(n) = 0.0327n + 1.5448 with a

Figure 11. DLBP combinatorial optimization methods’ hazard performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

H
az

ar
d

M
ea

su
re

 (o
pt

im
al

 a
t 1

)

GA

H-K

Worst Case

178

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Figure 12. DLBP combinatorial optimization methods’ demand performance

Figure 13. DLBP combinatorial optimization methods’ part removal direction performance

0

10

20

30

40

50

60

70

80

90

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

D
em

an
d

M
ea

su
re

Optimal
GA
H-K
Worst Case

0

1

2

3

4

5

6

7

8

9

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

D
ire

ct
io

n
M

ea
su

re

Optimal
GA
H-K
Worst Case

 179

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

coefficient of determination of 0.9917 indicating
99.17% of the total variation is explained by the
calculated linear regression curve. The growth of
0.0327n + 1.5448 provides an experimentally de-
rived result for the average-case time complexity
of DLBP GA on the DLBP A Priori data sets as
Ο(n) or linear complexity (Rosen, 1999). This is
in agreement with the theoretical calculations.

With DLBP H-K, the regression equation was
calculated to be T(n) = 0.0033n2 − 0.0002n + 0.2893.
The small coefficients are indicative of the slow
runtime growth in instance size. The coefficient of
determination is calculated to be 0.9974, indicat-
ing 99.74% of the total variation is explained by
the calculated regression curve. With a 2nd-order
polynomial regression model used to fit the H-K
curve, the average-case time complexity of DLBP
H-K curve (with forward and reverse data, 1 ≤ ∆ψ
≤ 10, and resulting skip sizes of n − 10 ≤ ψ ≤ n
− 1) is listed as Ο(n2) or polynomial complexity.

The deterministic, single iteration nature of H-K
also indicates that the process would be no faster
than this, so it is expected that the time complex-
ity lower bound is Ω(n2) and, therefore, the H-K
appears to have an asymptotically tight bound of
Θ(n2) as configured here. This empirical result is
also in agreement with the theoretical complexity
determination.

The runtimes can be examined in greater detail
in Figure 15. While DLBP GA was seen to be
very fast due to its linear growth, at some point
it may be necessary to increase GA’s population
or number of generations to allow for the genera-
tion of adequate solutions and this will of course
increase its runtime. DLBP H-K was also very
fast, even with ∆ψ varying from 1 to 10 and with
forward and reverse data runs (the anomaly seen
in the H-K curve in Figure 15 is due to a software
rule that dictated that all ψ could be as small as n
– 10, but no less than ψ = 3, to prevent exhaustive

Figure 14. Time complexity of DLBP combinatorial optimization methods

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

 T
im

e
(in

 s
ec

on
ds

)

n cubed (div. by 1000)
Exhaustive
GA
H-K

180

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

or near-exhaustive searches at small n). The H-K
process grows approximately exponentially in 1/ψ,
taking, for example from 0.02 seconds at ψ = 5
(actually 5 ≤ ψ ≤ 11) up to just under 20 seconds
at ψ = 2 (i.e., 2 ≤ ψ ≤ 11 and 19.34 seconds) with
n = 12 and forward and reverse data (exhaustive
search was seen to take almost 25 minutes (24.61
minutes) on the same size data).

Although less than optimal, these results are
not unusual for heuristics run against this data
set. These suboptimal results are not indicative
of poor heuristic performance but are, more
likely, indicative of a successful DLBP A Priori
benchmark data set design. The DLBP A Priori
benchmark data is especially designed to chal-
lenge the solution-finding ability of a variety
of combinatoric solution-generating techniques
to enable a thorough quantitative evaluation of
various method’s performances in different areas

(McGovern & Gupta, 2004). Suboptimal solutions
typically result when this specially designed set
of instances is processed, even at seemingly small
n values. For each of these methodologies, their
DLBP-specific engineering element of searching
exclusively for precedence-preserving solution
n-tuples means that the inclusion or addition of
precedence constraints will reduce the search
space and increasingly move any of these methods
towards the optimal solution.

A smaller ψ or (as with GA and other search
techniques) the inclusion of precedence constraints
will increasingly move the DLBP H-K method to-
wards the optimal solution. The time complexity
performance of DLBP H-K provides the tradeoff
benefit with the technique’s near-optimal perfor-
mance, demonstrating the moderate increase in
time required with problem size, which grows
markedly slower than the exponential growth of

Figure 15. Detailed time complexity of DLBP combinatorial optimization methods

0.000

5.000

10.000

15.000

20.000

25.000

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

Ti
m

e
(in

 s
ec

on
ds

)

GA

H-K

 181

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

exhaustive search. Runtime performance can be
improved by increasing skip size and by running
the data in one direction only while the opposite
(i.e., decreasing skip size and running different
versions of the data, including running the data
in forward and reverse order) would be expected
to increase solution efficacy. Note that, as a newly
developed methodology, other modifications may
decrease runtime and/or increase solution efficacy
as well. With DLBP GA runtime performance
can be improved by reducing the number of
generations or reducing the population, while
the opposite is true for improving other measures
of performance; that is, increase the number of
generations or increase the population to improve
efficacy indices.

Each of the collected quantitative values was
then compiled into one table for reference and
comparison (Table 5). This table contains each
of the combinatorial optimization methodologies
researched here and lists their number of worksta-
tions, balance, hazard, demand and part removal
direction sample mean efficacy indices; regression
model average-case experimentally determined
time complexity; and associated asymptotic upper
bound (experimentally determined average case
using the DLBP A Priori data).

The shading provides a quick reference to
performance, with darker shades indicating wors-
ening performance. While Exhaustive Search is
included in the table, none of its row elements are
considered for shading since its purpose in the
table is as the benchmark for comparison. Note
that the balance measure sample mean efficacy

index is based on the normalized balance. This is
done in the interest of providing a more appropri-
ate and consistent scale across the table.

Future Directions

Directions for future research can be described
as follows:

•	 It may be of interest to vary the multicriteria
ordering of the objectives; two possibili-
ties include a re-ordering of the objectives
based on expert domain knowledge, and a
comparison of all permutations of the ob-
jectives in search of patterns or unexpected
performance improvements or decreases

•	 While the multiple-criteria decision making
approach used here made use of preemptive
goal programming, many other methodolo-
gies are available and should be considered
to decrease processing time, for an overall
or selective efficacy improvement, or to
examine other promising methods including
weighting schemes

•	 It may be of interest to make use of the
promise of H-K in generating uninformed
solutions from throughout the search space
through the use of H-K to hot start GA

•	 Throughout the research, complete disas-
sembly was assumed; while this is of great
theoretical interest (since it allows for a
worst-case study in terms of problem com-
plexity and it provides consistency across

Table 5. Summary of quantitative measures for both methodologies

 NWSEI)(normFEI HEI DEI REI T(n) big-Oh
Exhaustive 100% 100% 100% 100% 100% 1.199n! (n!)
GA 97% 94% 84% 78% 49% 0.033n (n)
H-K 96% 92% 90% 49% 20% 0.003n2 (n2)

182

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

the problem instances and methodologies),
in practical applications it is not necessarily
desired, required, practical, or efficient—
recommend that future studies consider
the more applied problem that allows for
incomplete or partial disassembly

•	 Per the prior recommendation and an earlier
one, different multicriteria ordering of the
objectives could simplify the determination
of the optimal level of incomplete disassem-
bly; for example, if the main objective is to
remove several demanded parts of a product
containing hundreds of parts, by making the
demand measure a higher priority objective
than the balance, it may be found that these
parts can be removed relatively early on in
the disassembly process thereby allowing
the process to terminate significantly earlier
in the case of partial disassembly

This concludes some suggestions for future
research. In addition to the items listed above, any
further developments and applications of recent
methodologies to multicriteria decision making,
the H-K algorithm or GA or the Disassembly Line
Balancing Problem that will help to extend the
research in these areas may be appropriate.

Conclusion

In this chapter, a new multi-objective optimization
problem was reviewed and used to demonstrate
the development of several performance assess-
ment techniques and the use of lexicographic
goal programming for comparison and analysis
of combinatoric search methodologies. From the
field of combinatorial optimization, an evolution-
ary algorithm and an uninformed general-purpose
search heuristic were selected to demonstrate
these tools. Quantitative and qualitative com-
parison was performed using tables, graphs
and efficacy measures with varying instance
sizes and using exhaustive search as a time and

performance benchmark. Each of the methodolo-
gies performed very well—though consistently
suboptimally—with the different performance
assessment techniques demonstrating a variety
of performance subtleties that show no one tech-
nique to be ideal in all applications. While these
results are solely dependent on the A Priori data
set instances used, this data set appears to have
successfully posed—even with multiple optimum
extreme points—a nontrivial challenge to the
methodologies and in all instance sizes, providing
at least an initial indication that the data set does
meet its design expectations and does not contain
any unforeseen nuances that would render it a
weak benchmark for this type of NP-complete
combinatorial problem.

References

Bierwirth, C., Mattfeld, D. C., & Kopfer, H. (1996).
On permutation representations for scheduling
problems. In H. M. Voigt, W. Ebeling, I. Rechen-
berg, & H.-P. Schwefel (Eds.), Parallel problem
solving from nature -- PPSN IV, Lecture notes in
computer science (pp. 310-318). Berlin, Germany:
Springer-Verlag.

Brennan, L., Gupta, S. M., & Taleb, K. N. (1994).
Operations planning issues in an assembly/disas-
sembly environment. International Journal of
Operations and Production management, 14(9),
57-67.

Charnes, A. & Cooper, W. W. (1961). Management
models and industrial applications of linear pro-
gramming. New York: John Wiley and Sons.

Charnes, A., Cooper, W. W., & Ferguson, R. O.
(1955). Optimal estimation of executive com-
pensation by linear programming. Management
Science, 1(2), 138-151.

Elsayed, E. A. & Boucher, T. O. (1994). Analysis
and control of production systems. Upper Saddle
River, New Jersey: Prentice Hall.

 183

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Erel, E. & Gokcen, H. (1964). Shortest-route for-
mulation of mixed-model assembly line balancing
problem. Management Science, 11(2), 308-315.

Garey, M. & Johnson, D. (1979). Computers
and intractability: A guide to the theory of NP
completeness. San Francisco, CA: W. H. Freeman
and Company.

Güngör, A. & Gupta, S. M. (1999a). A system-
atic solution approach to the disassembly line
balancing problem. In Proceedings of the 25th
International Conference on Computers and
Industrial Engineering (pp. 70-73), New Orleans,
Louisiana.

Güngör, A. & Gupta, S. M. (1999b). Disassembly
line balancing. In Proceedings of the 1999 An-
nual Meeting of the Northeast Decision Sciences
Institute (pp. 193-195), Newport, Rhode Island.

Güngör, A. & Gupta, S. M. (1999c). Issues in
environmentally conscious manufacturing and
product recovery: A survey. Computers and
Industrial Engineering, 36(4), 811-853.

Güngör, A. & Gupta, S. M. (2001). A solution
approach to the disassembly line problem in the
presence of task failures. International Journal
of Production Research, 39(7), 1427-1467.

Güngör, A. & Gupta, S. M. (2002). Disassembly
line in product recovery. International Journal of
Production Research, 40(11), 2569-2589.

Gupta, S. M. & Taleb, K. (1994). Scheduling
disassembly. International Journal of Production
Research, 32(8), 1857-1866.

Gutjahr, A. L. & Nemhauser, G. L. (1964). An
algorithm for the line balancing problem. Man-
agement Science, 11(2), 308-315.

Hackman, S. T., Magazine, M. J., & Wee, T.
S. (1989). Fast, effective algorithms for simple
assembly line balancing problems. Operations
Research, 37(6), 916-924.

Hillier, F. S. & Lieberman, G. J. (2005). In-
troduction to operations research. New York:
McGraw-Hill.

Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor, MI: University of
Michigan Press.

Hu, T. C. & Shing, M. T. (2002). Combinatorial
algorithms. Mineola, NY: Dover Publications.

Lambert, A. D. J. (2003). Disassembly sequencing:
A survey. International Journal of Production
Research, 41(16), 3721-3759.

Lambert, A. J. D. & Gupta, S. M. (2005). Disas-
sembly modeling for assembly, maintenance,
reuse, and recycling. Boca Raton, FL: CRC Press
(Taylor & Francis).

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006).
Balancing assembly lines with tabu search. Eu-
ropean Journal of Operational Research, 168(3),
826-837.

McGovern, S. M. & Gupta, S. M. (2003). Greedy
algorithm for disassembly line scheduling. In
Proceedings of the 2003 IEEE International
Conference on Systems, Man, and Cybernetics
(pp. 1737-1744), Washington, D.C.

McGovern, S. M. & Gupta, S. M. (2004). Com-
binatorial optimization methods for disassembly
line balancing. In Proceedings of the 2004 SPIE
International Conference on Environmentally
Conscious Manufacturing IV (pp. 53-66), Phila-
delphia, Pennsylvania.

McGovern, S. M. & Gupta, S. M. (2005). Local
search heuristics and greedy algorithm for bal-
ancing the disassembly line. The International
Journal of Operations and Quantitative Manage-
ment, 11(2), 91-114.

McGovern, S. M. & Gupta, S. M. (2006a).
Computational complexity of a reverse manu-
facturing line. In Proceedings of the 2006 SPIE
International Conference on Environmentally

184

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Conscious Manufacturing VI (CD-ROM), Boston,
Massachusetts.

McGovern, S. M. & Gupta, S. M. (2006b). Perfor-
mance metrics for end-of-life product processing.
In Proceedings of the 17th Annual Production &
Operations Management Conference (CD-ROM)
Boston, Massachusetts.

McGovern, S. M., & Gupta, S. M. (2007). A
balancing method and genetic algorithm for dis-
assembly line balancing. European Journal of
Operational Research, 179(3), 692-708.

McGovern, S. M., Gupta, S. M., & Kamarthi, S.
V. (2003). Solving disassembly sequence plan-
ning problems using combinatorial optimization.
In Proceedings of the 2003 Northeast Decision
Sciences Institute Conference (pp. 178-180),
Providence, Rhode Island.

Osman, I. H. (2004). Metaheuristics: Models,
design and analysis. In Proceedings of the Fifth
Asia Pacific Industrial Engineering and Manage-
ment Systems Conference (pp. 1.2.1-1.2.16), Gold
Coast, Australia.

Osman, I. H. & Laporte, G. (1996). Metaheuristics:
A bibliography. Annals of Operations Research,
63, 513-623.

Papadimitriou, C. H. & Steiglitz, K. (1998). Com-
binatorial optimization: Algorithms and complex-
ity. Mineola, NY: Dover Publications.

Ponnambalam, S. G., Aravindan, P., & Naidu, G.
M. (1999). A comparative evaluation of assem-
bly line balancing heuristics. The International
Journal of Advanced Manufacturing Technology,
15, 577-586.

Rosen, K. H. (1999). Discrete mathematics and
its applications. Boston, MA: McGraw-Hill.

Suresh, G., Vinod, V. V., & Sahu, S. (1996). A
genetic algorithm for assembly line balancing.
Production Planning and Control, 7(1), 38-46.

Torres, F., Gil, P., Puente, S. T., Pomares, J., &
Aracil, R. (2004). Automatic PC disassembly
for component recovery. International Journal
of Advanced Manufacturing Technology, 23(1-
2), 39-46.

Tovey, C. A. (2002). Tutorial on computational
complexity. Interfaces, 32(3), 30-61.

ADDITIONAL READING

Agrawal, S. & Tiwari, M. K. (2008). A collabora-
tive ant colony algorithm to stochastic mixed-
model u-shaped disassembly line balancing and
sequencing problem. International Journal of
Production Research, 46(6), 1405-1429.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974).
The design and analysis of computer programs.
Reading, MA: Addison-Wesley.

Altekín, F. T. (2005). Profit oriented disassembly
line balancing. Unpublished doctoral disserta-
tion, Middle East Technical University, Ankara,
Turkey.

Altekin, F. T., Kandiller, L., & Ozdemirel, N.
E. (2008). Profit-oriented disassembly-line bal-
ancing. International Journal of Production
Research, 46(10), 2675-2693.

Bautista, J. & Pereira, J. (2002). Ant algorithms
for assembly line balancing. In M. Dorigo (Ed.),
ANTS 2002, LNCS 2463 (pp. 65-75). Berlin, Ger-
many: Springer-Verlag.

Das, S. K. & Naik, S. (2002). Process planning
for product disassembly. International Journal of
Production Research, 40(6), 1335-1355.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996).
The ant system: Optimization by a colony of co-
operating agents. IEEE Transactions on Systems,
Man, and Cybernetics–Part B, 26(1), 1-13.

 185

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

Duta, L., Filip, F. G., & Henrioud, J. M. (2002).
Automated disassembly: Main stage in manu-
factured products recycling. In Proceedings of
the 4th International Workshop on Computer Sci-
ence and Information Technologies (CD-ROM),
Patras, Greece.

Duta, L., Filip, F. G., & Henrioud, J. M. (2005).
Applying equal piles approach to disassembly
line balancing problem. In Proceedings of the
16th IFAC World Congress (CD-ROM), Prague,
Czech Republic.

Franke, C., Basdere, B., Ciupek, M., & Seliger,
S. (2006). Remanufacturing of mobile phones
- Capacity, program and facility adaptation plan-
ning. Omega, 34(6), 562-570.

Glover, F. (1989). Tabu search, Part I. ORSA
Journal of Computing, 1(3), 190-206.

Glover, F. (1990). Tabu search, Part II. ORSA
Journal of Computing, 2(1), 4-32.

Güngör, A. & Gupta, S. M. (1997). An evaluation
methodology for disassembly processes. Comput-
ers and Industrial Engineering, 33(1), 329-332.

Güngör, A. & Gupta, S. M. (1998). Disassembly
sequence planning for products with defective
parts in product recovery. Computers and Indus-
trial Engineering, 35(1-2), 161-164.

Güngör, A. & Gupta, S. M. (2001). Disassembly se-
quence plan generation using a branch-and-bound
algorithm. International Journal of Production
Research, 39(3), 481-509.

Gupta, S. M., Evren, E., & McGovern, S. M.
(2004). Disassembly sequencing problem: A case
study of a cell phone. In Proceedings of the 2004
SPIE International Conference on Environmen-
tally Conscious Manufacturing IV (pp. 43-52),
Philadelphia, Pennsylvania.

Gupta, S. M. & Güngör, A. (2001). Product
recovery using a disassembly line: Challenges
and solution. In Proceedings of the 2001 IEEE

International Symposium on Electronics and the
Environment (pp. 36-40), Denver, Colorado.

Gupta, S. M. & McGovern, S. M. (2004). Multi-
objective optimization in disassembly sequencing
problems. In Proceedings of the 2nd World Confer-
ence on Production & Operations Management
and the 15th Annual Production & Operations
Management Conference (CD-ROM), Cancun,
Mexico.

Hong, D. S. & Cho, H. S. (1997). Generation of
robotic assembly sequences with consideration
of line balancing using simulated annealing.
Robotica, 15, 663-673.

Hopper, E. & Turton, B. C. H. (2000). An empiri-
cal investigation of meta-heuristic and heuristic
algorithms for a 2D packing problem. European
Journal of Operational Research, 128(1), 34-57.

Huang, Y. M. & Liao, Y.-C. (2006). Optimum
disassembly process with genetic algorithms
for a compressor. In Proceedings of the ASME
2006 Design Engineering Technical Conferences
and Computers and Information in Engineering
Conference (CD-ROM), Philadelphia, Pennsyl-
vania.

Iori, M. (2003). Metaheuristic algorithms for com-
binatorial optimization problems. Unpublished
doctoral dissertation, University of Bologna,
Bologna, Italy.

Kekre, S., Rao, U. S., Swaminathan, J. M., &
Zhang, J. (2003). Reconfiguring a remanufac-
turing line at Visteon, Mexico. Interfaces, 33(6),
30-43.

Kongar, E. & Gupta, S. M. (2002a). A genetic
algorithm for disassembly process planning. In
Proceedings of the 2002 SPIE International Con-
ference on Environmentally Conscious Manufac-
turing II (pp. 54-62), Newton, Massachusetts.

Kongar, E. & Gupta, S. M. (2002b). A multi-
criteria decision making approach for disas-

186

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

sembly-to-order systems. Journal of Electronics
Manufacturing, 11(2), 171-183.

Kongar, E., Gupta, S. M., & McGovern, S. M.
(2003). Use of data envelopment analysis for
product recovery. In Proceedings of the 2003
SPIE International Conference on Environmen-
tally Conscious Manufacturing III (pp. 219-231),
Providence, Rhode Island.

Kotera, Y. & Sato, S. (1997). An integrated recy-
cling process for electric home appliances. Mit-
subishi Electric ADVANCE, September, 23-26.

Lambert, A. J. D. (1999). Linear programming
in disassembly/clustering sequence generation.
Computers and Industrial Engineering, 36(4),
723-738.

Lambert, A. J. D. (2002). Determining optimum
disassembly sequences in electronic equipment.
Computers and Industrial Engineering, 43(3),
553-575.

Lambert, A. J. D. & Gupta, S. M. (2002). Demand-
driven disassembly optimization for electronic
products. Journal of Electronics Manufacturing,
11(2), 121-135.

Lapierre, S. D. & Ruiz, A. B. (2004). Balancing
assembly lines: An industrial case study. Jour-
nal of the Operational Research Society, 55(6),
589–597.

Lee, D.-H., Kang, J.-G., & Xirouchakis, P. (2001).
Disassembly planning and scheduling: Review
and further research. Journal of Engineering
Manufacture, 215(B5), 695-709.

McGovern, S. M., & Gupta, S. M. (2003). 2-opt
heuristic for the disassembly line balancing
problem. In Proceedings of the SPIE Interna-
tional Conference on Environmentally Conscious
Manufacturing III (pp. 71-84), Providence, Rhode
Island.

McGovern, S. M. & Gupta, S. M. (2004a).
Demanufacturing strategy based upon meta-

heuristics. In Proceedings of the 2004 Industrial
Engineering Research Conference (CD-ROM),
Houston, Texas.

McGovern, S. M. & Gupta, S. M. (2004b). Me-
taheuristic technique for the disassembly line
balancing problem. In Proceedings of the 2004
Northeast Decision Sciences Institute Conference
(pp. 223-225), Atlantic City, New Jersey.

McGovern, S. M., & Gupta, S. M. (2004c). Multi-
criteria ant system and genetic algorithm for end-
of-life decision making. In Proceedings of the 35th
Annual Meeting of the Decision Sciences Institute
(pp. 6371-6376). Boston, Massachusetts.

McGovern, S. M. & Gupta, S. M. (2005a). Stochas-
tic and deterministic combinatorial optimization
solutions to an electronic product disassembly flow
shop. In Proceedings of the Northeast Decision
Sciences Institute – 34th Annual Meeting (CD-
ROM), Philadelphia, Pennsylvania.

McGovern, S. M. & Gupta, S. M. (2005b). Un-
informed and probabilistic distributed agent
combinatorial searches for the unary NP-complete
disassembly line balancing problem. In Proceed-
ings of the 2005 SPIE International Conference
on Environmentally Conscious Manufacturing V
(pp. 81-92), Boston, Massachusetts.

McGovern, S. M. & Gupta, S. M. (2006a). Ant
colony optimization for disassembly sequenc-
ing with multiple objectives. The International
Journal of Advanced Manufacturing Technology,
30(5-6), 481-496.

McGovern, S. M. & Gupta, S. M. (2006b). De-
terministic hybrid and stochastic combinatorial
optimization treatments of an electronic product
disassembly line. In K. D. Lawrence, G. R. Reeves,
& R. Klimberg (Eds.), Applications of manage-
ment science, Vol. 12, (pp. 175-197). North-Hol-
land, Amsterdam: Elsevier Science.

McGovern, S. M., Gupta, S. M., & Nakashima, K.
(2004). Multi-criteria optimization for non-linear

 187

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

end of lifecycle models. In Proceedings of the
Sixth Conference on EcoBalance (pp. 201-204).
Tsukuba, Japan.

McMullen, P. R. & Frazier, G. V. (1998). Using
simulated annealing to solve a multi-objective
assembly line balancing problem with parallel
workstations. International Journal of Production
Research, 36(10), 2717-2741.

McMullen, P. R. & Tarasewich, P. (2003). Using
ant techniques to solve the assembly line balancing
problem. IIE Transactions, 35, 605-617.

Merkle, D. & Middendorf, M. (2000). An ant
algorithm with a new pheromone evaluation
rule for total tardiness problems. In Proceed-
ings of Real-World Applications of Evolutionary
Computing, EvoWorkshops 2000: EvoSTIM (pp.
287-296), Edinburgh, Scotland.

Moore, K. E., Güngör, A., & Gupta, S. M. (1996).
Petri net models of flexible and automated manu-
facturing systems: A survey. International Jour-
nal of Production Research, 34(11), 3001-3035.

Moore, K. E., Güngör, A., & Gupta, S. M. (2001).
Petri net approach to disassembly process planning
for products with complex AND/OR precedence
relationships. European Journal of Operational
Research, 135(2), 428-449.

O’Shea, B., Kaebernick, H., Grewal, S. S., Per-
lewitz, H., Müller, K., & Seliger, G. (1999). Method
for automatic tool selection for disassembly plan-
ning. Assembly Automation, 19(1), 47-54.

Pinedo, M. (2002). Scheduling theory, algorithms
and systems. Upper Saddle River, New Jersey:
Prentice-Hall.

Prakash & Tiwari, M. K. (2005). Solving a disas-
sembly line balancing problem with task failure
using a psychoclonal algorithm. In Proceedings of
the ASME 2005 International Design Engineering
Technical Conferences & Computers and Infor-
mation in Engineering Conference (CD-ROM),
Long Beach, California.

Reingold, E. M., Nievergeld, J., & Deo, N. (1977).
Combinatorial algorithms: Theory and practice.
Englewood Cliffs, NJ: Prentice-Hall.

Scholl, A. (1995). Balancing and sequencing of
assembly lines. Heidelberg, Germany: Physica-
Verlag.

Schultmann, F. & Rentz, O. (2001). Environment-
oriented project scheduling for the dismantling
of buildings. OR Spektrum, 23, 51-78.

Sodhi, M. S. & Reimer, B. (2001). Models for
recycling electronics end-of-life products. OR
Spektrum, 23, 97-115.

Taleb, K. N., Gupta, S. M., & Brennan, L. (1997).
Disassembly of complex products with parts and
materials commonality. Production Planning and
Control, 8(3), 255-269.

Tang, Y., Zhou, M.-C., & Caudill, R. (2001a). A
systematic approach to disassembly line design.
In Proceedings of the 2001 IEEE International
Symposium on Electronics and the Environment
(pp. 173-178), Denver, Colorado.

Tang, Y., Zhou, M.-C., & Caudill, R. (2001b). An
integrated approach to disassembly planning and
demanufacturing operation. IEEE Transactions
on Robotics and Automation, 17(6), 773-784.

Thilakawardana, D., Driscoll, J., & Deacon, G.
(2003a). A forward-loading heuristic procedure
for single model assembly line balancing. In
Proceedings of the 17th International Conference
on Production Research (CD-ROM), Blacksburg,
Virginia.

Thilakawardana, D., Driscoll, J., & Deacon, G.
(2003b). Assembly line work assignment using a
front loading genetic algorithm. In Proceedings of
the 17th International Conference on Production
Research (CD-ROM), Blacksburg, Virginia.

Tiacci, L., Saetta, S., & Martini, A. (2003). A
methodology to reduce data collection in lean
simulation modeling for the assembly line balanc-

188

Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem

ing problem. In Proceedings of Summer Computer
Simulation Conference 2003 (pp. 841-846), Mon-
treal, Canada.

Tiwari, M. K., Sinha, N., Kumar, S., Rai, R., &
Mukhopadhyay, S. K. (2001). A petri net based
approach to determine the disassembly strategy
of a product. International Journal of Production
Research, 40(5), 1113-1129.

Toffel, M. W. (2002). End-of-life product recovery:
Drivers, prior research, and future directions.
In Proceedings of the INSEAD Conference on
European Electronics Take-Back Legislation:
Impacts on Business Strategy and Global Trade,
Fontainebleau, France.

Veerakamolmal, P. & Gupta, S. M. (1998). Optimal
analysis of lot-size balancing for multiproducts
selective disassembly. International Journal of
Flexible Automation and Integrated Manufactur-
ing, 6(3&4), 245-269.

Veerakamolmal, P. & Gupta, S. M. (1999). Analy-
sis of design efficiency for the disassembly of
modular electronic products. Journal of Electron-
ics Manufacturing, 9(1), 79-95.

Wang, H., Niu, Q., Xiang, D., & Duan, G. (2006).
Ant colony optimization for disassembly se-
quence planning. In Proceedings of the ASME
2006 Design Engineering Technical Conferences
and Computers and Information in Engineering
Conference (CD-ROM), Philadelphia, Pennsyl-
vania.

Wang, H., Xiang, D., Duan, G., & Song, J. (2006).
A hybrid heuristic approach for disassembly/re-
cycle applications. In Proceedings of the Sixth
International Conference on Intelligent Systems
Design and Applications (pp. 985-995), Jinan,
Shandong, China,.

Zeid, I., Gupta, S. M., & Bardasz, T. (1997). A
case-based reasoning approach to planning for
disassembly. Journal of Intelligent Manufactur-
ing, 8(2), 97-106.

